Можно решить сразу все три задания таким образом. Здесь речь идет о правильных многоугольниках, в заданиях спрашиваются длины, а не площади, значит отношения будут пропорциональны отношению сторон этих многоугольников. То есть у каждого задания один и тот же ответ. Не нужно вычислять радиусы вписанных и описанных окружностей, а также периметры. Достаточно вычислить отношения сторон.
12:8=1,5 - отношение (периметров, радиусов вписанной окружности, радиусов описанной окружности, нужное подчеркнуть) большого многоугольника к меньшему.
- отношение (периметра, радиуса вписанной окружности, радиуса описанной окружности, нужное подчеркнуть) меньшего многоугольника к большому.
1) В любом треугольнике центр вписанной окружности лежит внутри треугольника, так как биссектрисы треугольника пересекаются внутри треугольника.
2) В правильном треугольнике центры вписанной и описанной окружностей совпадают.
3) В остроугольном треугольнике центр описанной около него окружности лежит внутри треугольника.
4) В тупоугольном треугольнике центр описанной около него окружности лежит вне треугольника.
5) В прямоугольном треугольнике центр описанной около него окружности лежит в центре гипотенузы.
Можно решить сразу все три задания таким образом. Здесь речь идет о правильных многоугольниках, в заданиях спрашиваются длины, а не площади, значит отношения будут пропорциональны отношению сторон этих многоугольников. То есть у каждого задания один и тот же ответ. Не нужно вычислять радиусы вписанных и описанных окружностей, а также периметры. Достаточно вычислить отношения сторон.
12:8=1,5 - отношение (периметров, радиусов вписанной окружности, радиусов описанной окружности, нужное подчеркнуть) большого многоугольника к меньшему.
- отношение (периметра, радиуса вписанной окружности, радиуса описанной окружности, нужное подчеркнуть) меньшего многоугольника к большому.