Воспользуемся формулой площади треугольника S=1/2*ab*sin С, где С - угол между сторонами а и b. Если углы треугольника обозначим как А, В, С, а стороны как а, b, c (соответственно 7, 9, 11), то получим значения площади S=63/2*sin C=77/2*sin B=99/2*sin A. Другая формула площади S=1/4*V(a+b+c)(a+b-c)(a+c-b)(b+c-a)=1/4V27*5*9*13=3/4V195. 63/2sin C=3/4*V195 => sin C=3/4*V195*2/63=3/126*v195=1/42V195 (cos C)^2=1-(sin c)^2 => (cos C)^2=1-195/1764=65/588 => cos C=V65/588=1/14*V65/3=1/42V195. Аналогично находим cos B, cos A.
Дано :
параллелограмм NPKA
<ANK = 45°
<KNP = 65°
Найти:
<А, <К, <Р, <N, <NKA, <NKP = ?
<N = <ANK + <KNP = 45° + 65° = 110°
<N = <K = 110° (св-во параллелограмма - противоположные углы равны)
<А = 180° - <К = 180° - 110° = 70° (свойство параллелограмма - углы, прилежащие к любой стороне, в сумме равны 180°)
<Р = <А = 70° (св-во параллелограмма - противоположные углы равны)
<NKA = <KNP = 65° (н.л. при NP//AK и секущей NK)
<NKP = <K - <NKA = 110° - 65° = 45°
ответ: <А = <Р = 70° ; <К = <N = 110° ; <NKA = 65° ; <NKP = 45°
S=1/2*ab*sin С, где С - угол между сторонами а и b. Если углы треугольника обозначим как А, В, С, а стороны как а, b, c (соответственно 7, 9, 11), то получим
значения площади S=63/2*sin C=77/2*sin B=99/2*sin A.
Другая формула площади S=1/4*V(a+b+c)(a+b-c)(a+c-b)(b+c-a)=1/4V27*5*9*13=3/4V195.
63/2sin C=3/4*V195 => sin C=3/4*V195*2/63=3/126*v195=1/42V195
(cos C)^2=1-(sin c)^2 => (cos C)^2=1-195/1764=65/588 => cos C=V65/588=1/14*V65/3=1/42V195.
Аналогично находим cos B, cos A.