1. Основания трапеции cb и ad параллельны. Диагональ db является секущей для параллельных cb и ad. Углы cbd и bda - накрест лежащие при пересечении параллельных прямых секущей. Значит, <cbd = <bda. 2. Рассмотрим треугольник abd. В нем известны оба катета ab, bd и основание ad. Треугольник прямоугольный, поскольку квадрат одной стороны этого треугольника равен сумме квадратов двух других сторон: ad² = bd² + ba² 15² = 12²+ 9² 225 = 225 3. Как уже доказано выше, <cbd = <bda. Поэтому будем находить синус, косинус и тангенс угла bda в прямоугольном треугольнике abd: sin bda = ab/ad = 9/15 = 3/5 cos bda = bd/ad = 12/15 = 4/5 tg bda = ab/bd = 9/12 = 3/4
<cbd = <bda.
2. Рассмотрим треугольник abd. В нем известны оба катета ab, bd и основание ad. Треугольник прямоугольный, поскольку квадрат одной стороны этого треугольника равен сумме квадратов двух других сторон:
ad² = bd² + ba²
15² = 12²+ 9²
225 = 225
3. Как уже доказано выше, <cbd = <bda. Поэтому будем находить синус, косинус и тангенс угла bda в прямоугольном треугольнике abd:
sin bda = ab/ad = 9/15 = 3/5
cos bda = bd/ad = 12/15 = 4/5
tg bda = ab/bd = 9/12 = 3/4
АВС - прямоугольный
<MCK = 24°
Найти: <B
1. После построения высоты СМ видим прямоугольный треугольник АМС, <АМС = 90°. Поскольку биссектриса СК делит прямой угол С пополам, то
<АСК = 90 : 2 = 45°.
Зная угол МСК и АСК, находим угол АСМ:
<АСМ = <ACK - <MCK = 45 - 24 = 21°
2. Находим в треугольнике АМС последний неизвестный угол А, зная, что сумма углов треугольника равна 180°:
< А = 180 - <АМС - <АСМ = 180 - 90 - 21 = 69°
3. Находим неизвестный угол В в треугольнике АВС, зная его углы С и А:
<В = 180 - 90 - 69 = 21°