Дано: окружность с центром о и радиусом АО. АС и BD - диаметры. Равны ли данные треугольники? Если равны то по какому признаку равенства треугольников?
Для начала найдем отношение ВР/РС. Для этого: Проведем BD параллельно АС. Тогда <PAC=<BDA, как накрест лежащие при параллельных прямых BD и AC и секущей АD. ∆АКМ ~ ∆BKD по двум углам (1). ∆АРС ~ ∆DРВ по двум углам (2). Из (1) BD/AM=4 и BD=4AM = 2AC. Из (2) BP/PC=2. ВМ - медиана и по ее свойствам Sabm=Scbm. Треугольники АВК и АКМ - треугольники с общей высотой к стороне ВМ. Значит Sabk/Sakm=4/1. => Sabk=Sabc*(1/2)*(4/5)=(2/5)*Sabc. Sakm=Sabc*1/(2*5)=(1/10)*Sabc. Треугольники ABP и APC - треугольники с общей высотой к стороне ВC. Значит Sabp/Sapc=2/1. => Sapc=Sabc*1/3=(1/3)*Sabc. Тогда Skpcm=Sapc-Sakm = (1/3)*Sabc-(1/10)*Sabc = (7/30)*Sabc. Sabk/Skpcm=(2/5)/(7/30)=12/7.
Если через центры данных окружностей провести прямую, то относительно нее данные касательные к окружностям будут симметричны. Тогда четырехугольник ABCD - равнобедренная трапеция. Найдем ее основания: (см. рисунок) ОО1АВ - прямоугольная трапеция, О1Q=AB=h - ее высота. По теореме Пифагора
Поскольку треугольники TCO иTDO1 - подобны и соотношение сторон равно R:r=4, то . По теореме Пифагора
Тогда , Поскольку треугольники TCS иTDR также подобны и соотношение сторон равно, то CS=4*12=48.
Тогда ABCD - равнобедренная трапеция с высотой 48 cм и средней линией 48+12=60 см. Ее площадь будет равна S=60*48=2880 см^2.
Проведем BD параллельно АС. Тогда <PAC=<BDA, как накрест лежащие при параллельных прямых BD и AC и секущей АD.
∆АКМ ~ ∆BKD по двум углам (1).
∆АРС ~ ∆DРВ по двум углам (2).
Из (1) BD/AM=4 и BD=4AM = 2AC.
Из (2) BP/PC=2.
ВМ - медиана и по ее свойствам Sabm=Scbm.
Треугольники АВК и АКМ - треугольники с общей высотой к стороне ВМ. Значит Sabk/Sakm=4/1. => Sabk=Sabc*(1/2)*(4/5)=(2/5)*Sabc.
Sakm=Sabc*1/(2*5)=(1/10)*Sabc.
Треугольники ABP и APC - треугольники с общей высотой к стороне ВC.
Значит Sabp/Sapc=2/1. => Sapc=Sabc*1/3=(1/3)*Sabc.
Тогда Skpcm=Sapc-Sakm = (1/3)*Sabc-(1/10)*Sabc = (7/30)*Sabc.
Sabk/Skpcm=(2/5)/(7/30)=12/7.
Найдем ее основания: (см. рисунок)
ОО1АВ - прямоугольная трапеция, О1Q=AB=h - ее высота. По теореме Пифагора
Поскольку треугольники TCO иTDO1 - подобны и соотношение сторон равно R:r=4, то
.
По теореме Пифагора
Тогда
,
Поскольку треугольники TCS иTDR также подобны и соотношение сторон равно, то CS=4*12=48.
Тогда ABCD - равнобедренная трапеция с высотой 48 cм и средней линией 48+12=60 см. Ее площадь будет равна
S=60*48=2880 см^2.