См фото. Дано: цилиндр, АD=10 см, ОК=6 см, S(АВСD)=160 см². Найти S(цилиндра). Решение. АВСD сечение в виде прямоугольника, длина которого равна 10 см по условию. Площадь АВСD равна S=АВ·АD. 10·АВ=160, АВ=160/10=16 см. ΔАОВ - равнобедренный, АО=ВО=R (радиус цилиндра). ОК ⊥ АВ по условию (расстояние от О до АВ равно 6).ОК - медиана Значит ΔАОК прямоугольный, АК=ВК=16/2=8 см. Найдем ОА по теореме Пифагора ОА²=6²+8²=36+64=100, ОА=√100=10 см. Площадь основания S1=πR²=100π=314 см², площадь двух оснований цилиндра равна 314·2=628 см² Определим площадь боковой поверхности цилиндра S2=2πRh=2·3,14·10·10=628 см². Площадь полной поверхности цилиндра равна 628+628=1256 см². ответ: 1256 см².
Построим сумму векторов а и b и их разность. ↑АС = ↑р = ↑а + ↑b ↑DB = ↑q = ↑a - ↑b Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А. ∠ЕАС - искомый. Из ΔABD найдем длину вектора q по теореме косинусов: |↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49 |↑q| = 7 Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°. Из ΔABС найдем длину вектора р по теореме косинусов: |↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129 |↑p| = √129
Из ΔЕАС по теореме косинусов: cos α = (AE² + AC² - EC²) / (2 · AE · AC) cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903 cos α = - 13√129/301
Дано: цилиндр,
АD=10 см, ОК=6 см,
S(АВСD)=160 см².
Найти S(цилиндра).
Решение.
АВСD сечение в виде прямоугольника, длина которого равна 10 см по условию. Площадь АВСD равна S=АВ·АD.
10·АВ=160,
АВ=160/10=16 см.
ΔАОВ - равнобедренный, АО=ВО=R (радиус цилиндра).
ОК ⊥ АВ по условию (расстояние от О до АВ равно 6).ОК - медиана Значит ΔАОК прямоугольный, АК=ВК=16/2=8 см.
Найдем ОА по теореме Пифагора ОА²=6²+8²=36+64=100,
ОА=√100=10 см.
Площадь основания S1=πR²=100π=314 см²,
площадь двух оснований цилиндра равна 314·2=628 см²
Определим площадь боковой поверхности цилиндра
S2=2πRh=2·3,14·10·10=628 см².
Площадь полной поверхности цилиндра равна 628+628=1256 см².
ответ: 1256 см².
↑АС = ↑р = ↑а + ↑b
↑DB = ↑q = ↑a - ↑b
Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А.
∠ЕАС - искомый.
Из ΔABD найдем длину вектора q по теореме косинусов:
|↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49
|↑q| = 7
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°.
Из ΔABС найдем длину вектора р по теореме косинусов:
|↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129
|↑p| = √129
Из ΔЕАС по теореме косинусов:
cos α = (AE² + AC² - EC²) / (2 · AE · AC)
cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903
cos α = - 13√129/301