Дано: правильная четырехугольная пирамида. Высота 4 см, боковое ребро 5 см. Найти: диагональ основания, площадь основания, площадь боковой поверхности, площадь полной поверхности
Теоремы с чертежами даны в первом рисунке 1) a)56+32=/=180°; не параллельны б)72=72; параллельны по накрест лежащим углам в)113+67=180°; параллельны по сумме односторонних углов г)153+35=/=180°; не параллельны
а)73+73=/=180°; не параллельны б)25=/=63; не параллельны в)58+22=/=180°; не параллельны г)143=143; параллельны по накрест лежащим углам
Объяснение:
Теоремы с чертежами даны в первом рисунке
1)
a)56+32=/=180°; не параллельны
б)72=72; параллельны по накрест лежащим углам
в)113+67=180°; параллельны по сумме односторонних углов
г)153+35=/=180°; не параллельны
а)73+73=/=180°; не параллельны
б)25=/=63; не параллельны
в)58+22=/=180°; не параллельны
г)143=143; параллельны по накрест лежащим углам
2)
а) a║b
∠6=∠3=108°; ∠5=180-108=72°; ∠5=∠4=72°;
∠1=∠3=108°; ∠4=∠2=72°; ∠6=∠8=108°; ∠5=∠7=72°
б)m║d
∠4=∠6=63°; ∠3=180-63=117°; ∠3=∠5=117°; ∠7=∠5=117°; ∠6=∠8=63°; ∠2=∠3=117°; ∠1=∠4=63°
3) Решения даны на втором и третьем из прикреплённых рисунков
см²
Объяснение:
Дано (см. рисунок):
Параллелограмм ABCD
AB = 3 см
BC = 5 см
α = ∠BAE – острый угол параллелограмма
tgα = 2
Найти: площадь параллелограмма S.
Решение. Проведём высоту h = BE = DF параллелограмма и введём обозначение x = AE = CF. По определению
Отсюда
h = tgα·x = 2·x.
Так как треугольник ABE прямоугольный с гипотенузой AB, то можно применит теорему Пифагора:
AB² = AE² + BE² или 3² = x² + h² или 3² = x² + (2·x)².
Отсюда
5·x² = 9 или x = 3/√5.
Площадь параллелограмма определяется через сторону AD и высоту h по формуле:
S = AD·h.
Тогда
S = AD·h = 5·h = 5·2·x = 5·2·3/√5 = 6√5 см².