Проведём две высоты. Получим одинаковые прямоугольные треугольники внутри трапеции. Нижний катет будет равен 1, т.к. (7-5)/2=1
1 = 2/2, т.е. этот катет равен половине гипотенузы, а значит лежит против угла 30 градусов. В середине трапеции образовался прямоугольник, углы которого равны по 90 градусов. 90 + 30 = 120 градусов углы при верхнем основании.
Сумма углов при боковой стороне должна равняться 180 градусов. 180-120 = 60 градусов углы при нижнем основании.
Проведем высоты как показано на рисунке. MN=BC=5 (т.к. BCNM - прямоугольник). BM=CN=h Обозначим AM как x, для удобства. AD=AM+MN+ND 20=x+5+ND ND=15-x Для треугольника ABM запишем теорему Пифагора: AB2=h2+x2 202=h2+x2 h2=400-x2 Для треугольника CDN запишем теорему Пифагора: CD2=h2+ND2 252=h2+(15-x)2 625=h2+(15-x)2 Подставляем вместо h2 значение из первого уравнения: 625=400-x2+(15-x)2 625-400=-x2+152-2*15*x-x2 225=152-2*15*x 225=225-30x 30x=0 x=0, получается, что BM совпадает со стороной AB, т.е. AB является высотой трапеции. Тогда площадь трапеции равна: S=AB(AD+BC)/2=20(20+5)/2=10*25=250
Углы при верхнем основании равны по 120 градусов
Углы при нижнем основании равны по 60 градусов
Объяснение:
Проведём две высоты. Получим одинаковые прямоугольные треугольники внутри трапеции. Нижний катет будет равен 1, т.к. (7-5)/2=1
1 = 2/2, т.е. этот катет равен половине гипотенузы, а значит лежит против угла 30 градусов. В середине трапеции образовался прямоугольник, углы которого равны по 90 градусов. 90 + 30 = 120 градусов углы при верхнем основании.
Сумма углов при боковой стороне должна равняться 180 градусов. 180-120 = 60 градусов углы при нижнем основании.
Объяснение:
Проведем высоты как показано на рисунке. MN=BC=5 (т.к. BCNM - прямоугольник). BM=CN=h Обозначим AM как x, для удобства. AD=AM+MN+ND 20=x+5+ND ND=15-x Для треугольника ABM запишем теорему Пифагора: AB2=h2+x2 202=h2+x2 h2=400-x2 Для треугольника CDN запишем теорему Пифагора: CD2=h2+ND2 252=h2+(15-x)2 625=h2+(15-x)2 Подставляем вместо h2 значение из первого уравнения: 625=400-x2+(15-x)2 625-400=-x2+152-2*15*x-x2 225=152-2*15*x 225=225-30x 30x=0 x=0, получается, что BM совпадает со стороной AB, т.е. AB является высотой трапеции. Тогда площадь трапеции равна: S=AB(AD+BC)/2=20(20+5)/2=10*25=250