Есть два решения. Первый - по формулам, Второй - через прямоугольный треугольник Основное тригонометрическое тождество Надо только помнить, что синус острого угла прямоугольного треугольника - отношение противолежащего катета к гипотенузе; косинус - отношение прилежащего катета к гипотенузе; тангенс - отношение противолежащего катета к прилежащему; котангенс - отношение прилежащего катета к противолежащему.
1. cosα = 15/17 Рассмотрим прямоугольный треугольник, в котором 17 - гипотенуза, а катет, прилежащий к углу α, равен 15. По теореме Пифагора найдем второй катет: а = √(17² - 15²) = √64 = 8 Теперь осталось только выписать нужные отношения: sinα = 8/17 tgα = 8/15 ctgα = 15/8
2. Рассмотрим прямоугольный треугольник с гипотенузой 41 и катетом, противолежащим углу α, равным 40. По теореме Пифагора найдем второй катет: а = √(41² - 40²) = √81 = 9 И выпишем нужные отношения: cosα = 9/41 tgα = 40/9 ctgα = 9/40
Задачу можно решить по-разному Обозначим вершины треугольника А, В, С, а точку пересечения высоты с гипотенузой - Н.
Найдем гипотенузу. Так как катет АВ, равный 10 см, противолежит углу 30 градусов, он равен половине гипотенузы, а гипотенуза, соответственно, в два раза больше катета. Гипотенуза равна 20 см Катет ВС найдем по теореме Пифагора. Он равен 10√3
Пусть отрезок АН будет х, тогда НС - 20-х
Выразим h² из прямоугольных треугольников АВН и ВСН, образованных катетами, высотой и частью гипотенузы.
h²=АВ²-АН²= 10²-х² h²=ВС²-НС²=(10√3)²-(20-х)²
Приравняем выражения, найденные для высоты.
10²-х²=(10√3)²-(20-х)² 100-х²=300-400+40х-х² 40х=200 х=5 Подставим значение х в уравнение высоты: h²=АВ²-х гораздо короче, если мы помним значение синусов некоторых углов.
синус острого угла прямоугольного треугольника - отношение противолежащего катета к гипотенузе;
косинус - отношение прилежащего катета к гипотенузе;
тангенс - отношение противолежащего катета к прилежащему;
котангенс - отношение прилежащего катета к противолежащему.
1. cosα = 15/17
Рассмотрим прямоугольный треугольник, в котором 17 - гипотенуза, а катет, прилежащий к углу α, равен 15.
По теореме Пифагора найдем второй катет:
а = √(17² - 15²) = √64 = 8
Теперь осталось только выписать нужные отношения:
sinα = 8/17
tgα = 8/15
ctgα = 15/8
2. Рассмотрим прямоугольный треугольник с гипотенузой 41 и катетом, противолежащим углу α, равным 40.
По теореме Пифагора найдем второй катет:
а = √(41² - 40²) = √81 = 9
И выпишем нужные отношения:
cosα = 9/41
tgα = 40/9
ctgα = 9/40
Задачу можно решить по-разному Обозначим вершины треугольника А, В, С, а точку пересечения высоты с гипотенузой - Н.
Найдем гипотенузу.
Так как катет АВ, равный 10 см, противолежит углу 30 градусов, он равен половине гипотенузы, а гипотенуза, соответственно, в два раза больше катета.
Гипотенуза равна 20 см
Катет ВС найдем по теореме Пифагора. Он равен 10√3
Пусть отрезок АН будет х, тогда НС - 20-х
Выразим h² из прямоугольных треугольников АВН и ВСН, образованных катетами, высотой и частью гипотенузы.
h²=АВ²-АН²= 10²-х²
h²=ВС²-НС²=(10√3)²-(20-х)²
Приравняем выражения, найденные для высоты.
10²-х²=(10√3)²-(20-х)²
100-х²=300-400+40х-х²
40х=200
х=5
Подставим значение х в уравнение высоты:
h²=АВ²-х гораздо короче, если мы помним значение синусов некоторых углов.
Рассмотрим треугольник АВС.
Высота, проведенная к гипотенузе, - катет прямоугольного треугольника АВН.
ВН:АВ=sin(60º)
sin(60º)=(√3):2
ВН=АВ*(√3):2=10*(√3):2=5√3
h=5√3