Дано точки а(2; 5),b,(-2; 1).при паралельному перенесенні середина відрізка ab переходить точку с¹(4; -8).знайти координати точок ; в які переходять точки а і в
На рисунке голубым это картина. Вокруг окантовка. Видно что в две стороны увеличилась и Ширина и длина.
Значит обозначаем окантовка =Х Ширина стала =2х; Длина= стала 2х; Площадь с окантовкой стала=558см^2 S -площадь прямоугольника; a -ширина b -длина; S=a•b; Уравнение (10+2х)•(20+2х)=504 10•20+10•2х+2х•20+2х•2х-504=0 200+20х+40х+4х^2-504=0 4х^2+60х-304=0 Разделим на 2 все 2х^2+30х-152=0 D=b^2-4•a•c= 30^2- 4•2•(-152)= 900-8•(-152)=900+1216=2116 X1,2=(-b+-корень из D)/(2•a); X1=(-30-46)/2•2=-76/4=-19не подходит; Х2=(-30+46)/2•2=16/4=4 см
Значит обозначаем окантовка =Х
Ширина стала =2х;
Длина= стала 2х;
Площадь с окантовкой стала=558см^2
S -площадь прямоугольника; a -ширина b -длина;
S=a•b;
Уравнение
(10+2х)•(20+2х)=504
10•20+10•2х+2х•20+2х•2х-504=0
200+20х+40х+4х^2-504=0
4х^2+60х-304=0
Разделим на 2 все
2х^2+30х-152=0
D=b^2-4•a•c= 30^2- 4•2•(-152)=
900-8•(-152)=900+1216=2116
X1,2=(-b+-корень из D)/(2•a);
X1=(-30-46)/2•2=-76/4=-19не подходит;
Х2=(-30+46)/2•2=16/4=4 см
ответ: ширина окантовки 4 см
Радиус описанной окружности прямоугольного треугольника равен половине гипотенузы. Данный треугольник Пифагоров и гипотенуза равна 5см.
Точка М - центр описанной окружности.
Точка О - центр вписанной окружности.
Тогда R=2,5см, то есть ВМ=2,5см.
Радиус вписанной окружности равен по формуле:
r=(AC+BC-АВ)/2 = 2/2=1см.
Итак, СН=r=1см => HB=3-1=2см.
PB=HB=2см (касательные из одной точки).
Тогда МР=2,5-2=0,5см. В прямоугольном треугольнике ОМР по Пифагору:
ОМ=√(1²+0,5²)= √1,25 ≈ 1,118 ≈ 1,12см .
ответ: расстояние между центрами окружностей равно
√1,25 ≈ 1,12 см.
Или так: по теореме Эйлера в треугольнике расстояние между центрами вписанной и описанной окружностей находится по формуле:
d² = R² - 2·R·r.
В нашем случае R = 2,5см, а r = 1cм.
тогда d = √(2,5² -2·2,5) = √(2,5·0,5) = √1,25 ≈ 1,12 см.