Дано точки м(2; 2) і N(6; 5). Побудуйте довільний вектор ä, який: а) дорівнює вектору MN; б) дорівнює вектору NM; в) спiвнапрямлений з вектором NM і || = 2| MN); г) не є колінеарним до вектора MN i lāl= 0,5|MN. An
Смотри у параллелепипеда все угла 90 градусов Параллельные стороны и противоположные ровны 5 и 12 см Диагональ делит угол на 45 градусов так как угол 90 градусов то другая сторона равна 90-45=45 Так как эти угла равны то треугольники на которые делит диагональ ровна по 2 углам и диагональ между ними Найдём всю площадь по формуле площадь параллелепипеда S=a*b S=12*5 S=60см(В квадрате)Вместо этого напишешь в верху над см Это площадь всего Теперь найдём сторон их две и они одинаковы так как состоят из 2 равных треугольников Значит площадь стороны равна S /2 60:2=30см в квадрате)Спс мне
Проведём высоту СН. Получился прямоугольный треугольник СДН. Высота делит нижнее основание на 2 отрезка АН и НД, причём АН=ВН=15, тогда НД=27-15=12см. По условиям диагональ ВД делит угол Д пополам, а так как ВС||АД, то угол АДВ=углу СВД. Рассмотрим полученный ∆ВСД. Так как вышеуказанные углы у него равны, то треугольник равнобедренный, значит ВС=СД=15см.
Рассмотрим ∆СНД. В нём мы нашли 2 стороны. Теперьь найдём высоту СН в ∆СДН по теореме Пифагора, зная в нём 2 стороны: СН²=СД²-НД²:
СН=√(15²-12²)=√(225-144)=√81=9см; СН=9см. Теперь найдём площадь трапеции по формуле: (ВС+АД)/2×СН:
S=(15+27)÷2×9=42÷2×9=21×9=189см²
S=189см²
ЗАДАЧА 2
Проведём 2 высоты ВН и СК. Они делят нижнее основание на 3 отрезка так, что АН=КД, а НК=ВС. По условиям угол САД=углу ВАС. Так как диагональ АС является секущей при параллельных основаниях ВС и АД, то
угол ВСА=углу САД, как внутренние разносторонние. Значит треугольник ВАС - равнобедренный, и поэтому АВ=ВС=8см. Отрезок НК тоже будет 8см, а отрезки АН и КД, будут каждый:
АН = КД=(16-8)÷2=8÷2=4см. Рассмотрим ∆АВН. Он прямоугольный и нам уже известны 2 его стороны:
АВ=8см, АН=4см. Найдём высоту ВН по теореме Пифагора:
ВН²=АВ²-АН²=√(8²-4²)=√(64-16)=√48=4√3см. Теперь найдём площадь трапеции зная высоту и оба её основания по формуле:
Параллельные стороны и противоположные ровны 5 и 12 см
Диагональ делит угол на 45 градусов так как угол 90 градусов то другая сторона равна 90-45=45
Так как эти угла равны то треугольники на которые делит диагональ ровна по 2 углам и диагональ между ними
Найдём всю площадь по формуле площадь параллелепипеда S=a*b
S=12*5
S=60см(В квадрате)Вместо этого напишешь в верху над см
Это площадь всего
Теперь найдём сторон их две и они одинаковы так как состоят из 2 равных треугольников
Значит площадь стороны равна S /2
60:2=30см в квадрате)Спс мне
Объяснение: ЗАДАЧА 1
Проведём высоту СН. Получился прямоугольный треугольник СДН. Высота делит нижнее основание на 2 отрезка АН и НД, причём АН=ВН=15, тогда НД=27-15=12см. По условиям диагональ ВД делит угол Д пополам, а так как ВС||АД, то угол АДВ=углу СВД. Рассмотрим полученный ∆ВСД. Так как вышеуказанные углы у него равны, то треугольник равнобедренный, значит ВС=СД=15см.
Рассмотрим ∆СНД. В нём мы нашли 2 стороны. Теперьь найдём высоту СН в ∆СДН по теореме Пифагора, зная в нём 2 стороны: СН²=СД²-НД²:
СН=√(15²-12²)=√(225-144)=√81=9см; СН=9см. Теперь найдём площадь трапеции по формуле: (ВС+АД)/2×СН:
S=(15+27)÷2×9=42÷2×9=21×9=189см²
S=189см²
ЗАДАЧА 2
Проведём 2 высоты ВН и СК. Они делят нижнее основание на 3 отрезка так, что АН=КД, а НК=ВС. По условиям угол САД=углу ВАС. Так как диагональ АС является секущей при параллельных основаниях ВС и АД, то
угол ВСА=углу САД, как внутренние разносторонние. Значит треугольник ВАС - равнобедренный, и поэтому АВ=ВС=8см. Отрезок НК тоже будет 8см, а отрезки АН и КД, будут каждый:
АН = КД=(16-8)÷2=8÷2=4см. Рассмотрим ∆АВН. Он прямоугольный и нам уже известны 2 его стороны:
АВ=8см, АН=4см. Найдём высоту ВН по теореме Пифагора:
ВН²=АВ²-АН²=√(8²-4²)=√(64-16)=√48=4√3см. Теперь найдём площадь трапеции зная высоту и оба её основания по формуле:
S=(ВС+АД)÷2×ВН=
=(8+16)÷2×4√3=24÷2×4√3=12×4√3=
=48√3см².
ответ: S=48√3см²