Дано точки x не належить площині трикутника ABC точки M,N,K середини відрізків BA,BX,BC відповіно .Довести що площина MNK паралельна площині AXC до ть дуже потрібно
Равнобедренный треугольник касается своими сторонами сферы. Плоскость на которой лежит треугольник проходит через центр сферы. Найдем радиус сферы - радиус вписанной в треугольник окружности.
Объяснение:
Дано:
Окружность (O;r)
4-угольник ABCD - вписан в (O;r)
продолж.ВА пересек. продолж. CD в т. К.
Доказать:
∆BКС ~ ∆DКA
Доказательство:
Если 4-угольник можно вписать в окружность =>
=> сумма двух противоположных углов равна 180°:
Обозначим для удобства
Обратим внимание, что прямые КВ и КС можно расценивать как развернутые (180°) углы: уг.KAB и уг.КDC
Представив развернутые углы KAB и КDС,как сумму углов, их составляющих
(КАD + BAD и КDA + CDA соответственно) ,
выразим через них углы КAD и КDA:
А это означает, что:
Также, вследствие того что:
(по сути, АВС и КВС - это один и тот же угол,
DCA и КСА - аналогично).
Рассмотрим ∆BКС и ∆DКA:
Что и требовалось доказать.
Відповідь:
Площадь сферы равна 21,6 × pi ~= 67,86 см^2.
Пояснення:
Равнобедренный треугольник касается своими сторонами сферы. Плоскость на которой лежит треугольник проходит через центр сферы. Найдем радиус сферы - радиус вписанной в треугольник окружности.
r = b/2 × sqrt ( ( 2×a - b ) / ( 2×a + b ) )
Здесь
а - боковая сторона равнобедренного треугольника,
а = 12 см.
в - основание равнобедренного треугольника
в = 6 см.
r = 6/2 × sqrt ( ( 24 - 6 ) / ( 24 + 6 ) ) =
= 3 × sqrt ( 18 / 30 ) = 3 × sqrt ( 3 / 5 )
Площадь сферы
S = 4 × pi × r^2 = 4 × pi × 9 × 3 / 5 =
= 21,6 × pi ~= 67,86 см^2.