В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
1660044
1660044
09.01.2021 23:49 •  Геометрия

дано треугольник ABC - равносторонний BD - биссектриса найти |AD+CA-CB| (над каждым знак вектора)если AB =2√3​

Показать ответ
Ответ:
витяак74
витяак74
26.12.2023 20:22
Хорошо, давайте решим эту задачу пошагово.

1. Дано: треугольник ABC - равносторонний, AB = 2√3, BD - биссектриса.

2. Равносторонний треугольник означает, что все его стороны равны между собой. В данном случае AB = BC = CA = 2√3.

3. Биссектриса BD делит угол ABC пополам и пересекает сторону AC в точке D.

4. Поскольку треугольник ABC равносторонний, то все его углы равны между собой. Значит, угол ABC = угол BCA = угол CAB = 60 градусов.

5. Также из условия известно, что BD - биссектриса угла ABC. Это означает, что угол ABD = угол CBD = 30 градусов.

6. Теперь мы можем перейти к вычислению векторов. Вектор AD - это отрезок, соединяющий точки A и D. Вектор CA - это отрезок, соединяющий точки C и A.

7. Для вычисления векторов мы можем использовать координаты точек. Пусть точка A имеет координаты (0, 0), а точка C имеет координаты (2√3, 0).

8. Тогда координаты точки D можно найти с помощью пропорции. Поскольку BD - биссектриса, то отношение длины отрезка AD к длине отрезка CD равно отношению длины отрезка AB к длине отрезка BC. Длина отрезка AB равна 2√3, а длина отрезка BC равна 2√3. Значит, отношение длины отрезка AD к длине отрезка CD также равно 1:1. То есть, AD = CD.

9. Поскольку точка A имеет координаты (0, 0), а точка D имеет те же координаты, то AD = CD = (0, 0) - (x, y) = (-x, -y).

10. Получается, вектор AD имеет координаты (-x, -y), а вектор CA имеет координаты (2√3 - x, -y).

11. Теперь мы можем вычислить вектор AD + CA - CB. Для этого нужно сложить соответствующие координаты. Получим вектор (2√3 - x, -y) + (2√3, 0) - (2√3, 0).

12. После сложения координат получим вектор (2√3 - x + 2√3 - 2√3, -y - 0 + 0) = (4√3 - x, -y).

13. В итоге, |AD + CA - CB| = |4√3 - x, -y| = √((4√3 - x)^2 + (-y)^2).

14. Окончательный ответ будет выражен в виде радикала.

Таким образом, чтобы найти значение выражения |AD + CA - CB|, необходимо найти координаты точки D, сложить соответствующие координаты векторов, взять модуль этой суммы и вычислить значение выражения с использованием радикала и известных значений координат.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота