Образующая AS, как катет равнобедренного прямоугольного треугольника ASВ c прямым углом при вершине S и с гипотенузой АВ=6√2, равна 6 см Высота SО, как катет прямоугольного треугольника ASО с прямым углом при основании высоты, равна половине АS, так как противолежит углу 30° h=AS:2=3 см Радиус r основания конуса найдем из треугольника АSO. Можно по теореме Пифагора или через косинус угла SАО. АО=r=АS·cos(30°)=6·√3):2=3√3 Объем конуса равен одной трети произведения площади основания на его высоту и находится по формуле: V= π r² H:3
Пусть ABCD - данный параллелограмм, а A', B', C', D' - точки, в которые переходят A, B, C, D. Т.к. при параллельном переносе плоскость переходит в параллельную ей плоскость (или в себя), то плоскость α'В'С'D' параллельна плоскости αВCD.Т. к. при параллельном переносе точки смещаются по параллельным (или совпадающим) прямым на одно и то же расстояние, то AA' || BB' || CC' || DD' и AA' = BB' = CC' = DD'.Так что в четырехугольнике AA'D'D противолежащие стороны параллельны и равны, а, значит, AA'D'D — параллелограмм. Тогда A'D' = AD и A'D' || AD.Аналогично A'B' = AB и A'B' || AB; C'D' = CD и C'D' || CD; B'C' = BC и B'C' || BC.Т. к. две прямые, параллельные третьей, параллельны, то получаем, что A'D' || B'C', A'B' || C'D'.А, значит, A'B'C'D' — параллелограмм, равный параллелограмму ABCD (т.к. соответствующие стороны равны). Что и требовалось доказать.
Образующая AS, как катет равнобедренного прямоугольного треугольника ASВ c прямым углом при вершине S и с гипотенузой АВ=6√2, равна 6 см
Высота SО, как катет прямоугольного треугольника ASО с прямым углом при основании высоты, равна половине АS, так как противолежит углу 30°
h=AS:2=3 см
Радиус r основания конуса найдем из треугольника АSO. Можно по теореме Пифагора или через косинус угла SАО.
АО=r=АS·cos(30°)=6·√3):2=3√3
Объем конуса равен одной трети произведения площади основания на его высоту и находится по формуле:
V= π r² H:3
V==π 27·3 : 3=27π см³