У равнобокой трапеции углы при основании равны, значит есть 2 пары углов по 150 и по 180-150. т.е. по 30, боковая сторона 12 корней из 3, а меньшее основание 20, но большее основание равно меньшему основанию + 2 остатка треугольника. Высота - перпендекуляр, следовательно треугольники прямоугольники. катет напротив угла в 30 градусов равен половине гипотенузы, т.е. 6 корней из трех, найдем остаточек треугольника, 12 корней из трех в квадрате минус 6 корней из трех в квадрате равно 144*3-36*3=3(144-36)=3*108=324, корень из 324 - 18, значит этот остаток треугольника 18, значит 2 остатка 36, следовательно большее основание равно 20+36=56, площадь трапеции находится по формуле полусумма оснований на высоту, тогда 56+20=76/2=38* высоту, а высота 6 корней из трех, т.е. 228√3
Если двугранные углы при основании пирамиды равны, то высота пирамиды проецируется в центр окружности, вписанной в основание - точку О, и высоты боковых граней равны.
Сначала выразим в основании все нужные величины:
АН : ВН = ctg (α/2) ⇒ AH = BH · ctg(α/2) = 
BH : AB = sin(α/2) ⇒ AB = BH / sin(α/2) = 
Pabc = 2AB + BC = a/sin(α/2) + a
Sabc = 1/2 · BC · AH = 1/2 · a · a/2 · ctg(α/2) = a²/4 · ctg(α/2)
r = 2Sabc / Pabc
r = 2· a²/4 · ctg(α/2) / (a/sin(α/2) + a) = a·cos(α/2) / (2 + 2sin(α/2))
ΔSOH:
OH : SH = cosβ ⇒ SH = OH / cosβ = r / cosβ = 2Sabc / (Pabc · cosβ)
Теперь площадь полной поверхности:
S = Sбок + Sосн = 1/2 · Pabc · SH + Sabc
S = 1/2 · Pabc · 2Sabc / (Pabc · cosβ) + Sabc
S = Sabc/cosβ + Sabc = Sabc · (1/cosβ + 1)
S = a²/4 · ctg(α/2) · (1/cosβ + 1)
Вообще, если боковые грани наклонены под одним углом к основанию
228√3
Объяснение:
У равнобокой трапеции углы при основании равны, значит есть 2 пары углов по 150 и по 180-150. т.е. по 30, боковая сторона 12 корней из 3, а меньшее основание 20, но большее основание равно меньшему основанию + 2 остатка треугольника. Высота - перпендекуляр, следовательно треугольники прямоугольники. катет напротив угла в 30 градусов равен половине гипотенузы, т.е. 6 корней из трех, найдем остаточек треугольника, 12 корней из трех в квадрате минус 6 корней из трех в квадрате равно 144*3-36*3=3(144-36)=3*108=324, корень из 324 - 18, значит этот остаток треугольника 18, значит 2 остатка 36, следовательно большее основание равно 20+36=56, площадь трапеции находится по формуле полусумма оснований на высоту, тогда 56+20=76/2=38* высоту, а высота 6 корней из трех, т.е. 228√3
Если двугранные углы при основании пирамиды равны, то высота пирамиды проецируется в центр окружности, вписанной в основание - точку О, и высоты боковых граней равны.
Сначала выразим в основании все нужные величины:
АН : ВН = ctg (α/2) ⇒ AH = BH · ctg(α/2) = 
BH : AB = sin(α/2) ⇒ AB = BH / sin(α/2) = 
Pabc = 2AB + BC = a/sin(α/2) + a
Sabc = 1/2 · BC · AH = 1/2 · a · a/2 · ctg(α/2) = a²/4 · ctg(α/2)
r = 2Sabc / Pabc
r = 2· a²/4 · ctg(α/2) / (a/sin(α/2) + a) = a·cos(α/2) / (2 + 2sin(α/2))
ΔSOH:
OH : SH = cosβ ⇒ SH = OH / cosβ = r / cosβ = 2Sabc / (Pabc · cosβ)
Теперь площадь полной поверхности:
S = Sбок + Sосн = 1/2 · Pabc · SH + Sabc
S = 1/2 · Pabc · 2Sabc / (Pabc · cosβ) + Sabc
S = Sabc/cosβ + Sabc = Sabc · (1/cosβ + 1)
S = a²/4 · ctg(α/2) · (1/cosβ + 1)
Вообще, если боковые грани наклонены под одним углом к основанию
Sосн /Sбок = cosβ
Высота пирамиды:
ΔSOH:
SO / r = tgβ
SO = r · tgβ = a·cos(α/2) · tgβ / (2 + 2sin(α/2))