В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
ket174
ket174
30.05.2022 01:30 •  Геометрия

Дано треугольник авс. стороны а=10, в=7м

Показать ответ
Ответ:
sanekakot
sanekakot
06.03.2023 09:44

228√3

Объяснение:

У равнобокой трапеции углы при основании равны, значит есть 2 пары углов по 150 и по 180-150. т.е. по 30, боковая сторона 12 корней из 3, а меньшее основание 20, но большее основание равно меньшему основанию + 2 остатка треугольника. Высота - перпендекуляр, следовательно треугольники прямоугольники. катет напротив угла в 30 градусов равен половине гипотенузы, т.е. 6 корней из трех, найдем остаточек треугольника, 12 корней из трех в квадрате минус 6 корней из трех в квадрате равно 144*3-36*3=3(144-36)=3*108=324, корень из 324 - 18, значит этот остаток треугольника 18, значит 2 остатка 36, следовательно большее основание равно 20+36=56, площадь трапеции находится по формуле полусумма оснований на высоту, тогда 56+20=76/2=38* высоту, а высота 6 корней из трех, т.е. 228√3

0,0(0 оценок)
Ответ:

Если двугранные углы при основании пирамиды равны, то высота пирамиды проецируется в центр окружности, вписанной в основание - точку О, и высоты боковых граней равны.

Сначала выразим в основании все нужные величины:

АН : ВН = ctg (α/2)  ⇒  AH = BH · ctg(α/2) = 

BH : AB = sin(α/2)  ⇒  AB = BH / sin(α/2) = 

Pabc = 2AB + BC = a/sin(α/2) + a

Sabc = 1/2 · BC · AH = 1/2 · a · a/2 · ctg(α/2) = a²/4 · ctg(α/2)

r = 2Sabc / Pabc

r = 2· a²/4 · ctg(α/2) / (a/sin(α/2) + a) = a·cos(α/2) / (2 + 2sin(α/2))

ΔSOH:

OH : SH = cosβ  ⇒  SH = OH / cosβ = r / cosβ = 2Sabc / (Pabc · cosβ)

Теперь площадь полной поверхности:

S = Sбок + Sосн = 1/2 · Pabc · SH + Sabc

S = 1/2 · Pabc · 2Sabc / (Pabc · cosβ) + Sabc

S = Sabc/cosβ + Sabc = Sabc · (1/cosβ + 1)

S = a²/4 · ctg(α/2) · (1/cosβ + 1)

Вообще, если боковые грани наклонены под одним углом к основанию

Sосн /Sбок = cosβ

Высота пирамиды:

ΔSOH:

SO / r = tgβ

SO = r · tgβ = a·cos(α/2) · tgβ / (2 + 2sin(α/2))

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота