Возьмем равнобедренный треугольник ABC и построим высоты AH, BF, CD
Рассмотрим полученные треугольники ABF и ACD. Сторонf AB=AC по условию задачи, так же как и углы BAF=CAD. Так как высота в равнобедренном треугольнике является и биссектрисой то углы ABF=ACD= 600/2=300
Первый признак равенства треугольников: Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.
Значит треугольники ABF и ACD равны значит и сторона AH = CD (являющиеся высотами треугольника ABC)
1 Правильный четырехугольник это квадрат.
Пусть сторонs квадрата равны а, a = 4.
А) Радиус вписанной окружности перпендикулярен одной из сторон квадрата в точке касания, и равен половине стороны квадрата, то есть
R = a/2 = 4/2 = 2 (см).
Б) Теперь найдем радиус окружности, описанной вокруг равностороннего треугольника, по формуле из общей формулы:
R = a*b*c/(4*S), где a, b, c – стороны произвольного треугольника, S – площадь треугольника.
Частный случай, когда треугольник равносторонний и, применяя теорему синусов:
R = b/(2*sin α), в равностороннем треугольнике все углы равны 60, b – сторона равностороннего (правильного) треугольника.
R = b/(2*sin 60), sin 60 = √3/2.
R = b/√3.
b = R*√3 = 2√3 (см).
2 а) Дуги АВ, ВС, СД и АД равны, значит АВСД - вписанный квадрат.
Длина окружности: С=4ВС=16π см.
С=2πR ⇒ R=C/2π=16π/2π=8 см - это ответ.
б) Диагональ квадрата - это диаметр окружности.
d=D=2R=16 см.
Искомые хорды равны сторонам квадрата: а=d/√2=16/√2=8√2.
АВ=ВС=СД=АД=8√2 см - это ответ.
Возьмем равнобедренный треугольник ABC и построим высоты AH, BF, CD
Рассмотрим полученные треугольники ABF и ACD. Сторонf AB=AC по условию задачи, так же как и углы BAF=CAD. Так как высота в равнобедренном треугольнике является и биссектрисой то углы ABF=ACD= 600/2=300
Первый признак равенства треугольников: Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.
Значит треугольники ABF и ACD равны значит и сторона AH = CD (являющиеся высотами треугольника ABC)
также доказывается равенство высоты BF
(как то так)