По условию СМ - биссектриса, АМ=ВМ, ⇒ СМ - медиана.
Если биссектриса угла в треугольнике совпадает с медианой, то она – высота и перпендикулярна стороне, противолежащей тому углу и делит треугольник на два прямоугольных треугольника.
В ∆АСМ и ∆ ВСМ катеты АМ=ВМ по условию, СМ - общая сторона. ⇒
∆АСМ = ∆ ВСМ, ⇒АС=ВС, поэтому ∆ АСВ равнобедренный.
По условию СМ - биссектриса, АМ=ВМ, ⇒ СМ - медиана.
Если биссектриса угла в треугольнике совпадает с медианой, то она – высота и перпендикулярна стороне, противолежащей тому углу и делит треугольник на два прямоугольных треугольника.
В ∆АСМ и ∆ ВСМ катеты АМ=ВМ по условию, СМ - общая сторона. ⇒
∆АСМ = ∆ ВСМ, ⇒АС=ВС, поэтому ∆ АСВ равнобедренный.
∆ АСМ - прямоугольный. Сумма острых углов прямоугольного треугольника равна 90°. ⇒∠АСМ=90°-50°=40°
По т.синусов
Значения синусов найдем в таблице Брадиса или с инженерного калькулятора.
6:0,7660=АМ:0,6428
АМ=5,035
АВ=2 АМ=10,07 (ед.длины)