6 см
Объяснение:
Дано: ABCD - равнобедренная трапеция.
АВ=СD=10 см; АD=16 см;
∠А=∠D=60°
Найти: АD
ВЕ и СН - высоты.
Рассмотрим ΔАВЕ - прямоугольный (построение)
Сумма острых углов прямоугольного треугольника равна 90°.
⇒ ∠АВЕ=90°-60°=30°
Катет, лежащий против угла в 30°, равен половине гипотенузы.
⇒АЕ = 10:2=5 (см)
Аналогично в ΔНВD:
НD=5 см
⇒ ЕН=16-(5+5)=6 (см)
Если две прямые перпендикулярны третьей, то эти прямые параллельны.
ВЕ⊥АD; СН⊥АD ⇒ВЕ║СН.
⇒ ЕВСН - параллелограмм.
У параллелограмма противоположные стороны равны.
⇒ ЕН=ВС=6 см
Теперь просто подставляем и решаем: 4*6=(a*√3)
24=a*√3
a=24/√3 Возведём обе части в квадрат a*a=576/3
a*a=192
a=8√3
ответ: a=8√3
6 см
Объяснение:
Дано: ABCD - равнобедренная трапеция.
АВ=СD=10 см; АD=16 см;
∠А=∠D=60°
Найти: АD
ВЕ и СН - высоты.
Рассмотрим ΔАВЕ - прямоугольный (построение)
Сумма острых углов прямоугольного треугольника равна 90°.
⇒ ∠АВЕ=90°-60°=30°
Катет, лежащий против угла в 30°, равен половине гипотенузы.
⇒АЕ = 10:2=5 (см)
Аналогично в ΔНВD:
НD=5 см
⇒ ЕН=16-(5+5)=6 (см)
Если две прямые перпендикулярны третьей, то эти прямые параллельны.
ВЕ⊥АD; СН⊥АD ⇒ВЕ║СН.
⇒ ЕВСН - параллелограмм.
У параллелограмма противоположные стороны равны.
⇒ ЕН=ВС=6 см