Из точки В проведём прямую ВЕ, параллельную диагонали АС, Е ∈ AD ⇒ BEAC - параллелограмм, ВС || ЕА, ВЕ || АС
Значит, ВС = ЕА , ВЕ = АС - по свойству параллелограмма
АС⊥BD - по условию, ВЕ || АС ⇒ ВЕ⊥BD, AB⊥ED
▪В ΔВЕD: пропорциональные отрезки в прямоугольном треугольнике ( см. приложение )
АВ² = ЕА • АD
EA = AB² / AD = 3² / 4= 2,25 см
ВС = 2,25 см
▪В ΔBAD: по теореме Пифагора
BD² = AB² + AD² = 3² + 4² = 25
BD = 5 см
AD² = OD • BD ⇒ OD = AD² / BD = 4² / 5=3,2 см
BO = BD - OD = 5 - 3,2 = 1,8 см
▪В ΔBAD: AO² = BO • OD = 1,8 • 3,2 = 5,76
AO = 2,4 см
▪В ΔАВС: ВО² = АО • ОС ⇒ ОС = ВО² / АО = 1,8² / 2,4= 1,35
ОТВЕТ: ВС = 2,25 см ; СО = 1,35 см ; АО = 2,4 см ; ВО = 1,8 см ; DO = 3,2 см.
а) по теореме Пифагора найдём гипотенузу АВ: АВ²=АС²+ВС²
АВ=√(8²+6²)=√(64+36)=√100=10см
Зная, что центр описанной окружности около прямоугольного треугольника, является середина его гипотенузы. Поэтому R=AB÷2
R=10÷2=5см;
ответ: R=5см
б) катет, лежащий напротив угла 30° равен половине гипотенузы, поэтому гипотенуза АВ будет в 2 раза больше него: АВ=АС×2; АВ=18×2=36см;
Также R=AB÷2; R=36÷2=18.
ответ: R=18см
От себя добавлю что если вычислять по формуле, которая дана в задании, то результат получается другой. Например: следуя ей и используя данные задания "а", получится следующее: R=(a+b-c)÷2=(8+6-10)÷2=
=(14-10)÷2=4÷2=2. Совсем другой результат. Правило, что центр описанной окружности в прямоугольном треугольнике является середина гипотенузы, верно
Значит, ВС = ЕА , ВЕ = АС - по свойству параллелограмма
АС⊥BD - по условию, ВЕ || АС ⇒ ВЕ⊥BD, AB⊥ED
▪В ΔВЕD: пропорциональные отрезки в прямоугольном треугольнике ( см. приложение )
АВ² = ЕА • АD
EA = AB² / AD = 3² / 4= 2,25 см
ВС = 2,25 см
▪В ΔBAD: по теореме Пифагора
BD² = AB² + AD² = 3² + 4² = 25
BD = 5 см
AD² = OD • BD ⇒ OD = AD² / BD = 4² / 5=3,2 см
BO = BD - OD = 5 - 3,2 = 1,8 см
▪В ΔBAD: AO² = BO • OD = 1,8 • 3,2 = 5,76
AO = 2,4 см
▪В ΔАВС: ВО² = АО • ОС ⇒ ОС = ВО² / АО = 1,8² / 2,4= 1,35
ОТВЕТ: ВС = 2,25 см ; СО = 1,35 см ; АО = 2,4 см ; ВО = 1,8 см ; DO = 3,2 см.
Объяснение:
а) по теореме Пифагора найдём гипотенузу АВ: АВ²=АС²+ВС²
АВ=√(8²+6²)=√(64+36)=√100=10см
Зная, что центр описанной окружности около прямоугольного треугольника, является середина его гипотенузы. Поэтому R=AB÷2
R=10÷2=5см;
ответ: R=5см
б) катет, лежащий напротив угла 30° равен половине гипотенузы, поэтому гипотенуза АВ будет в 2 раза больше него: АВ=АС×2; АВ=18×2=36см;
Также R=AB÷2; R=36÷2=18.
ответ: R=18см
От себя добавлю что если вычислять по формуле, которая дана в задании, то результат получается другой. Например: следуя ей и используя данные задания "а", получится следующее: R=(a+b-c)÷2=(8+6-10)÷2=
=(14-10)÷2=4÷2=2. Совсем другой результат. Правило, что центр описанной окружности в прямоугольном треугольнике является середина гипотенузы, верно
ФОРМУЛА НА САМОМ ДЕЛЕ ТАКАЯ:
R=½×√(a²+b²), где " а" и "b"- катеты