Дано triangle KNM Пряма, яка паралельна КN, перетинає сторону КМ цього трикутника в точці K 1 , а сторону NM - B точці N_{1} Знайдіть K_{1}*N_{1} якщо NM : N*N_{1} = 7/2 , KN = 21 см. NM:
Так как в условии сказано "В треугольнике постройте точку", а треугольник - это плоская фигура, то значит надо построить точку ВНУТРИ треугольника. Точка, равноудаленная от сторон треугольника - это центр вписанной окружности. Этот центр лежит на пересечении биссектрис треугольника. Таким образом, надо построить треугольник по трем сторонам, а затем построить биссектрисы двух углов (достаточно). Точка пересечения этих биссектрис и даст нам искомую точку. Для построения на прямой "а" откладываем сторону АС треугольника (например, равную 7см) и из точек А и С проводим дуги окружностей радиусами 5см и 6см соответственно. Пересечение этих дуг даст нам точку В (вершину треугольника). Теперь делим углы А и С пополам. Для этого проводим окружности с центрами в точках А и С так, чтобы получить точки пересечения D и E, F и G этих окружностей со сторонами АВ и АС, СВ и АС соответственно. Из точек D и E, F и G проводим дуги окружностей радиусами DE и FG, соответственно и соединив полученные точки пересечения окружностей, получаем искомые биссектрисы и точку O их пересечения. Это и есть искомая точка, равноудаленная от сторон треугольника.
Расстояние от найденной точки до сторон треугольника (радиус вписанной окружности) можно найти по формуле: r=S/p, где S - площадь треугольника, а р - его полупериметр. У нас p = (5+6+7):2=9. S=√[p(p-a)(p-b)(p-c)] = √(9*2*3*4)=6√6. r=6√6/9=2√6/3≈1,6см.
Так как в условии сказано "В треугольнике постройте точку", а треугольник - это плоская фигура, то значит надо построить точку ВНУТРИ треугольника. Точка, равноудаленная от сторон треугольника - это центр вписанной окружности. Этот центр лежит на пересечении биссектрис треугольника. Таким образом, надо построить треугольник по трем сторонам, а затем построить биссектрисы двух углов (достаточно). Точка пересечения этих биссектрис и даст нам искомую точку. Для построения на прямой "а" откладываем сторону АС треугольника (например, равную 7см) и из точек А и С проводим дуги окружностей радиусами 5см и 6см соответственно. Пересечение этих дуг даст нам точку В (вершину треугольника). Теперь делим углы А и С пополам. Для этого проводим окружности с центрами в точках А и С так, чтобы получить точки пересечения D и E, F и G этих окружностей со сторонами АВ и АС, СВ и АС соответственно. Из точек D и E, F и G проводим дуги окружностей радиусами DE и FG, соответственно и соединив полученные точки пересечения окружностей, получаем искомые биссектрисы и точку O их пересечения. Это и есть искомая точка, равноудаленная от сторон треугольника.
Расстояние от найденной точки до сторон треугольника (радиус вписанной окружности) можно найти по формуле: r=S/p, где S - площадь треугольника, а р - его полупериметр. У нас p = (5+6+7):2=9. S=√[p(p-a)(p-b)(p-c)] = √(9*2*3*4)=6√6. r=6√6/9=2√6/3≈1,6см.
Для построения на прямой "а" откладываем сторону АС треугольника (например, равную 7см) и из точек А и С проводим дуги окружностей радиусами 5см и 6см соответственно. Пересечение этих дуг даст нам точку В (вершину треугольника). Теперь делим углы А и С пополам. Для этого проводим окружности с центрами в точках А и С так, чтобы получить точки пересечения D и E, F и G этих окружностей со сторонами АВ и АС, СВ и АС соответственно. Из точек D и E, F и G проводим дуги окружностей радиусами DE и FG, соответственно и соединив полученные точки пересечения окружностей, получаем искомые биссектрисы и точку O их пересечения. Это и есть искомая точка, равноудаленная от сторон треугольника.
Расстояние от найденной точки до сторон треугольника (радиус вписанной окружности) можно найти по формуле: r=S/p, где S - площадь треугольника, а
р - его полупериметр. У нас p = (5+6+7):2=9.
S=√[p(p-a)(p-b)(p-c)] = √(9*2*3*4)=6√6.
r=6√6/9=2√6/3≈1,6см.
Для построения на прямой "а" откладываем сторону АС треугольника (например, равную 7см) и из точек А и С проводим дуги окружностей радиусами 5см и 6см соответственно. Пересечение этих дуг даст нам точку В (вершину треугольника). Теперь делим углы А и С пополам. Для этого проводим окружности с центрами в точках А и С так, чтобы получить точки пересечения D и E, F и G этих окружностей со сторонами АВ и АС, СВ и АС соответственно. Из точек D и E, F и G проводим дуги окружностей радиусами DE и FG, соответственно и соединив полученные точки пересечения окружностей, получаем искомые биссектрисы и точку O их пересечения. Это и есть искомая точка, равноудаленная от сторон треугольника.
Расстояние от найденной точки до сторон треугольника (радиус вписанной окружности) можно найти по формуле: r=S/p, где S - площадь треугольника, а
р - его полупериметр. У нас p = (5+6+7):2=9.
S=√[p(p-a)(p-b)(p-c)] = √(9*2*3*4)=6√6.
r=6√6/9=2√6/3≈1,6см.