Дано трикутник ABC, відомо, що кут C — прямий, CA= 9 см, CB= 12 см. Зобрази відповідний малюнок. Обчисли AB і напиши тригонометричні співвідношення кута B. Відповідь: AB= см.
Для наглядности решения нужно начертить квадрат ABCD, провести диагональ АС, затем разделить все стороны квадрата пополам, соединить их между собой; получаем некий четырехугольник 1234 ( точка 1 - середина стороны AB, точка 2 - середина BC и тд. Решение. 1. Находим, чему равна сторона квадрата: сумма квадратов катетов равна квадрату гипотенузы. Сторона квадрата - катет равна а. 2а² =36; а² = 18; а= 3√ 2; 2. Рассмотрим прямоугольный Δ 1В2; его катеты 1В и В2 равны половине стороны квадрата и равны 3/2 √ 2; тогда гипотенуза, она же сторона вписанного четырехугольника, периметр которого нужно найти равна: √ [ (3/2√ 2)² + (3/2√ 2)²] = √9 = 3. Нетрудно увидеть, что остальные стороны вписанного четырехугольника тоже равны 3; тогда периметр его P= 4x3=12(см). ответ: периметр четырехугольника равен 12см
Давай, очень легко. 1) опустим высоту СН , получим прямоугольный треугольник СНД, угол Д по условию =45 градусов, значит другой острый угол этого треугольника НСД=45( так как сумма острых углов прямоугольного треугольника =90 градусов) 2) вс=12, так как трапеция прямоугольная то АВСН это прямоугольник со сторонами ВС=АН=12, итак АН=12, значит ДН=8 (20-12) 3) треугольник СНД- прямоугольно- равнобедренный (углы по 45) значит СН=НД=8 4) Sтрапеции= 1/2 (ВС+АД)* на высоту СН= 1/2 (12+20)*8=128 ответ 128
2) вс=12, так как трапеция прямоугольная то АВСН это прямоугольник со сторонами ВС=АН=12, итак АН=12, значит ДН=8 (20-12)
3) треугольник СНД- прямоугольно- равнобедренный (углы по 45) значит СН=НД=8
4) Sтрапеции= 1/2 (ВС+АД)* на высоту СН= 1/2 (12+20)*8=128
ответ 128