ответ: два решения (одно для остроугольного треугольника, другое для тупоугольного...)
1) Р = 256 (см)
2) Р = 56V21 (см)
Объяснение: треугольник АВС, основание ВС=2а (чтобы не возиться с дробями); АВ=АС=b
P = 2a+2b = 2(a+b)
а=b*cos(B); по т.синусов: b=2R*sin(B)
S = 2a*h/2 = ah; h = b*sin(B)
S = P*r/2 = (a+b)*r
(a+b)*r = ab*sin(B)
b(1+cos(B))*r = b*b*sin(B)*cos(B)
(1+cos(B))*r = 2R*sin^2(B)*cos(B)
r/(2R) = (1-cos(B))*cos(B)
обозначим х=cos(B)
x^2 - x + (6/25) = 0
(5x)^2 - 5*(5x) + 6 = 0
по т.Виета корни (3) и (2)
5х=3 ---> х = 0.6
---> sin(B) = V(1-0.36) = 0.8 или
5х=2 ---> х = 0.4
---> sin(B) = V(1-0.16) = 0.2V21
b = 2*50*0.8 = 80 или
b = 2*50*0.2V21 = 20V21
a = 80*0.6 = 48 или
а = 20V21*0.4 = 8V21
P = 2*(80+48) = 128*2 = 256 или
Р = 2*(20+8)*V21 = 56V21
Номер 1
Дано. DE||АС ;АВ=21;AD=7 см
Доказать. т-к АВС~т-ку DBE
Решение
Треугольники АВС и DBE подобны по первому признаку подобия
<В-общий,<А=<D,как соответственные углы при пересечении параллельных прямых DE и AD и секущей АВ
Так как коэффициент подобия равен отношению сходственных сторон,то
k=AB:DB
DB=AB-AD=21-7=14
k=21:14=3/2
Номер 56
Дано: <PQC=<A;BC=18 cм;СР=6 см;СQ=4 cм
АС-??
ТреугольникиCPQ и CBA подобны по первому признаку подобия
<С-общий;<CQP=<PAB,по условию
Стороны CP и ВС ,CQ и AC сходственные стороны подобных треугольников,поэтому коэффициент подобия равен
k=CP:BC=6:18=1/3
k=CQ:AC
AC=4:1/3=12 см
Номер 3
Дано: <В=<D;AF:CF=3/2;BF=15 cм
DF-??
Треугольники АВF и СDF подобны по первому признаку подобия треугольников
<В=<D поусловию
<АFB=<DFC,как вертикальные
АF и FC- сходственные стороны подобных треугольников поэтому коэффициент подобия равен
k=AF:CF=3/2
BF и DF тоже сходственные стороны,поэтому
ВF:DF=3/2
DF=BF:3/2=10 cм
Номер 4
Дано:трапеция;ВО=3,2 см;OD=6,4 см;
ВС=4,8 см
АD-??
Треугольники АОD и СОВ подобные по первому признаку подобия треугольников
<1=<4,как накрест лежащие
<2=<3,как накрест лежащие
при пересечении параллельных прямых ВС и АD секущими ПС и ВD
ОD и ОВ сходственные стороны подобных треугольников,поэтому
k=OD:OB=6,4:3,2=2
AD и ВС тоже сходственные стороны
АD:BC=2
АD=BC•2=4,8•2=9,6
Объяснение:
ответ: два решения (одно для остроугольного треугольника, другое для тупоугольного...)
1) Р = 256 (см)
2) Р = 56V21 (см)
Объяснение: треугольник АВС, основание ВС=2а (чтобы не возиться с дробями); АВ=АС=b
P = 2a+2b = 2(a+b)
а=b*cos(B); по т.синусов: b=2R*sin(B)
S = 2a*h/2 = ah; h = b*sin(B)
S = P*r/2 = (a+b)*r
(a+b)*r = ab*sin(B)
b(1+cos(B))*r = b*b*sin(B)*cos(B)
(1+cos(B))*r = 2R*sin^2(B)*cos(B)
r/(2R) = (1-cos(B))*cos(B)
обозначим х=cos(B)
x^2 - x + (6/25) = 0
(5x)^2 - 5*(5x) + 6 = 0
по т.Виета корни (3) и (2)
5х=3 ---> х = 0.6
---> sin(B) = V(1-0.36) = 0.8 или
5х=2 ---> х = 0.4
---> sin(B) = V(1-0.16) = 0.2V21
b = 2*50*0.8 = 80 или
b = 2*50*0.2V21 = 20V21
a = 80*0.6 = 48 или
а = 20V21*0.4 = 8V21
P = 2*(80+48) = 128*2 = 256 или
Р = 2*(20+8)*V21 = 56V21
Номер 1
Дано. DE||АС ;АВ=21;AD=7 см
Доказать. т-к АВС~т-ку DBE
Решение
Треугольники АВС и DBE подобны по первому признаку подобия
<В-общий,<А=<D,как соответственные углы при пересечении параллельных прямых DE и AD и секущей АВ
Так как коэффициент подобия равен отношению сходственных сторон,то
k=AB:DB
DB=AB-AD=21-7=14
k=21:14=3/2
Номер 56
Дано: <PQC=<A;BC=18 cм;СР=6 см;СQ=4 cм
АС-??
ТреугольникиCPQ и CBA подобны по первому признаку подобия
<С-общий;<CQP=<PAB,по условию
Стороны CP и ВС ,CQ и AC сходственные стороны подобных треугольников,поэтому коэффициент подобия равен
k=CP:BC=6:18=1/3
k=CQ:AC
AC=4:1/3=12 см
Номер 3
Дано: <В=<D;AF:CF=3/2;BF=15 cм
DF-??
Треугольники АВF и СDF подобны по первому признаку подобия треугольников
<В=<D поусловию
<АFB=<DFC,как вертикальные
АF и FC- сходственные стороны подобных треугольников поэтому коэффициент подобия равен
k=AF:CF=3/2
BF и DF тоже сходственные стороны,поэтому
ВF:DF=3/2
DF=BF:3/2=10 cм
Номер 4
Дано:трапеция;ВО=3,2 см;OD=6,4 см;
ВС=4,8 см
АD-??
Треугольники АОD и СОВ подобные по первому признаку подобия треугольников
<1=<4,как накрест лежащие
<2=<3,как накрест лежащие
при пересечении параллельных прямых ВС и АD секущими ПС и ВD
ОD и ОВ сходственные стороны подобных треугольников,поэтому
k=OD:OB=6,4:3,2=2
AD и ВС тоже сходственные стороны
АD:BC=2
АD=BC•2=4,8•2=9,6
Объяснение: