Пусть ABCD - данный параллелограмм, а A', B', C', D' - точки, в которые переходят A, B, C, D. Т.к. при параллельном переносе плоскость переходит в параллельную ей плоскость (или в себя), то плоскость α'В'С'D' параллельна плоскости αВCD.Т. к. при параллельном переносе точки смещаются по параллельным (или совпадающим) прямым на одно и то же расстояние, то AA' || BB' || CC' || DD' и AA' = BB' = CC' = DD'.Так что в четырехугольнике AA'D'D противолежащие стороны параллельны и равны, а, значит, AA'D'D — параллелограмм. Тогда A'D' = AD и A'D' || AD.Аналогично A'B' = AB и A'B' || AB; C'D' = CD и C'D' || CD; B'C' = BC и B'C' || BC.Т. к. две прямые, параллельные третьей, параллельны, то получаем, что A'D' || B'C', A'B' || C'D'.А, значит, A'B'C'D' — параллелограмм, равный параллелограмму ABCD (т.к. соответствующие стороны равны). Что и требовалось доказать.
1). Биссектриса СК делит угол С на два равных: АСК и КСВ. Зная угол НСК между высотой и биссектрисой, находим угол АСН:<ACH = <ACK - <HCK = 45 - 15 = 30°.В прямоугольном треугольнике АНС находим оставшийся неизвестный угол А:<A = 180 - ACH - AHC = 180 - 30 - 90 = 60°.Зная углы А и С, находим неизвестный угол В:<B = 180 - <C - <A = 180 - 90 - 60 = 30°.Зная, что катет прямоугольного треугольника, лежащий против угла в 30 градусов равен половине гипотенузы, находим АС:АС = 1/2 АВ = 1/2*14 = 7 см. 2) Поскольку в равнобедренном треугольнике углы при основании равны, находим угол А и С:<A = <C = (180 - 120) : 2 = 30°После построения высоты АН получаем прямоугольный треугольник АНС. Его неизвестный катет АН (наша высота) лежит против угла 30 градусов и равен половине гипотенузы:АН = АС : 2 = 12 : 2 = 6 см Подробнее - на -
2) Поскольку в равнобедренном треугольнике углы при основании равны, находим угол А и С:<A = <C = (180 - 120) : 2 = 30°После построения высоты АН получаем прямоугольный треугольник АНС. Его неизвестный катет АН (наша высота) лежит против угла 30 градусов и равен половине гипотенузы:АН = АС : 2 = 12 : 2 = 6 см
Подробнее - на -