Ортоцентр H треугольника ABC отразили относительно сторон и получили точки A₁, B₁ и C₁. Найдите углы треугольника A′B′C′, если ∠A=50∘, ∠B=75∘.
Объяснение:
По свойству ортоцентра : "Точка, симметричная ортоцентру относительно стороны треугольника, лежит на описанной около него окружности". Значит все точки А, В, С,A₁, B₁ , C₁-лежат на окружности.
1)ΔАВМ -прямоугольный ,∠А=50°⇒ ∠АВМ=90°-50°=40° . Значит ∠МВС=75°-40°=35° .Поэтому дуги ∪ АВ₁=80° и ∪ В₁С=70° по т. о вписанном угле.
2)ΔАСР -прямоугольный ,∠А=50°⇒ ∠АСР=90°-50°=40° . Значит ∠РСВ=55°-40°=15° .Поэтому дуги ∪ АС₁=80° и ∪ С₁В=30° по т. о вписанном угле.
3)ΔАВК -прямоугольный ,∠В=75°⇒ ∠ВАК=90°-75°=15° . Значит ∠САК=50°-15°=35° .Поэтому дуги ∪ СА₁=70° и ∪ А₁В=30° по т. о вписанном угле.
)ΔА₁В₁С₁ , по т. о вписанном угле : ∠А₁=1/2*(80°+80)°=80° ,∠В₁=1/2*(30°+30)°=30° , ∠С₁=1/2*(70°+70)°=70°.
Делается дополнительное построение, как на чертеже. ∠CFD = ∠ADF = ∠CDF (DE - биссектриса ∠ADC); поэтому ΔCFD - равнобедренный, CF = CD; Далее, поскольку CF II AD и AE = BE; то DE = FE (миллион объяснений, от теоремы Фалеса до равенства треугольников EBF и AED) Поэтому в равнобедренном ΔCFD CE - медиана к основанию. То есть CE перпендикулярно DE, В прямоугольном ΔCED EM - медиана к гипотенузе, то есть EM = CD/2 = 39/2; Но EM - средняя линия трапеции ABCD; EM = (BC + AD)/2; (Уже после опубликования решения автор мне заметила, что ΔEMD равнобедренный по той же самой причине, что и ΔFCD, поскольку средняя линия EM II AD, поэтому сразу можно было бы написать EM = MD = CD/2) Отсюда AD = CD - BC = 27; Теперь надо провести CK II AB; в ΔCKD CD = 39; CK = AB = 36; KD = AD - BC = 15; то есть получился Пифагоров треугольник (15^2 + 36^2 = 39^2) Это означает просто, что трапеция ABCD - прямоугольная, боковая сторона AB перпендикулярна основаниям и является высотой трапеции. Отсюда площадь трапеции EM*AB = 36*39/2 = 702
Ортоцентр H треугольника ABC отразили относительно сторон и получили точки A₁, B₁ и C₁. Найдите углы треугольника A′B′C′, если ∠A=50∘, ∠B=75∘.
Объяснение:
По свойству ортоцентра : "Точка, симметричная ортоцентру относительно стороны треугольника, лежит на описанной около него окружности". Значит все точки А, В, С,A₁, B₁ , C₁-лежат на окружности.
1)ΔАВМ -прямоугольный ,∠А=50°⇒ ∠АВМ=90°-50°=40° . Значит ∠МВС=75°-40°=35° .Поэтому дуги ∪ АВ₁=80° и ∪ В₁С=70° по т. о вписанном угле.
2)ΔАСР -прямоугольный ,∠А=50°⇒ ∠АСР=90°-50°=40° . Значит ∠РСВ=55°-40°=15° .Поэтому дуги ∪ АС₁=80° и ∪ С₁В=30° по т. о вписанном угле.
3)ΔАВК -прямоугольный ,∠В=75°⇒ ∠ВАК=90°-75°=15° . Значит ∠САК=50°-15°=35° .Поэтому дуги ∪ СА₁=70° и ∪ А₁В=30° по т. о вписанном угле.
)ΔА₁В₁С₁ , по т. о вписанном угле : ∠А₁=1/2*(80°+80)°=80° ,∠В₁=1/2*(30°+30)°=30° , ∠С₁=1/2*(70°+70)°=70°.
∠CFD = ∠ADF = ∠CDF (DE - биссектриса ∠ADC); поэтому ΔCFD - равнобедренный, CF = CD;
Далее, поскольку CF II AD и AE = BE; то DE = FE (миллион объяснений, от теоремы Фалеса до равенства треугольников EBF и AED)
Поэтому в равнобедренном ΔCFD CE - медиана к основанию.
То есть CE перпендикулярно DE,
В прямоугольном ΔCED EM - медиана к гипотенузе, то есть EM = CD/2 = 39/2;
Но EM - средняя линия трапеции ABCD; EM = (BC + AD)/2;
(Уже после опубликования решения автор мне заметила, что ΔEMD равнобедренный по той же самой причине, что и ΔFCD, поскольку средняя линия EM II AD, поэтому сразу можно было бы написать EM = MD = CD/2)
Отсюда AD = CD - BC = 27;
Теперь надо провести CK II AB; в ΔCKD CD = 39; CK = AB = 36; KD = AD - BC = 15; то есть получился Пифагоров треугольник (15^2 + 36^2 = 39^2)
Это означает просто, что трапеция ABCD - прямоугольная, боковая сторона AB перпендикулярна основаниям и является высотой трапеции.
Отсюда площадь трапеции EM*AB = 36*39/2 = 702