Объяснение:
Рисунок к задаче в приложении.
Построить три заданных точки не очень трудно.
А вот четвёртую точку - С - построим силой Разума.
мысль 1 - стороны параллелограмма параллельны
мысль 2 - противоположные стороны равны - AD = BC.
мысль 3 - как точка D сдвинута от точки А, так и точка С сдвинута от точки В.
РЕШЕНИЕ
Вычисляем разность координат точек А и D.
dX = Dx - Ax = -2 - (-3) = +1 - сдвинута на 1 вправо.
dY = Dy - Ay = -5 - (-2) = - 3 - сдвинута на 3 вниз.
Такие же сдвигу применим к точке В и получим координату точки С.
Cx= Bx + 1 = 4 + 1 = 5
Cy = By - 3 = 7 - 3 = 4
ОТВЕТ: С(5;4) - координата точки С.
ответ: 136°
Пусть L - точка пересечения биссектрисы угла В с окружностью, описанной около треугольника АВС.
Так как вписанные углы ABL и CBL равны, то равны и дуги AL и CL, а значит равны и хорды, их стягивающие:
AL = CL.
Так как точка L равноудалена от концов отрезка АС, то она лежит на серединном перпендикуляре к отрезку АС. То есть
точка L совпадает с точкой D.
Тогда четырехугольник ABCD вписан в окружность. Значит суммы противоположных углов в нем равны 180°.
∠ADC = 180° - ∠ABC = 180° - 44° = 136°
Объяснение:
Рисунок к задаче в приложении.
Построить три заданных точки не очень трудно.
А вот четвёртую точку - С - построим силой Разума.
мысль 1 - стороны параллелограмма параллельны
мысль 2 - противоположные стороны равны - AD = BC.
мысль 3 - как точка D сдвинута от точки А, так и точка С сдвинута от точки В.
РЕШЕНИЕ
Вычисляем разность координат точек А и D.
dX = Dx - Ax = -2 - (-3) = +1 - сдвинута на 1 вправо.
dY = Dy - Ay = -5 - (-2) = - 3 - сдвинута на 3 вниз.
Такие же сдвигу применим к точке В и получим координату точки С.
Cx= Bx + 1 = 4 + 1 = 5
Cy = By - 3 = 7 - 3 = 4
ОТВЕТ: С(5;4) - координата точки С.
ответ: 136°
Объяснение:
Пусть L - точка пересечения биссектрисы угла В с окружностью, описанной около треугольника АВС.
Так как вписанные углы ABL и CBL равны, то равны и дуги AL и CL, а значит равны и хорды, их стягивающие:
AL = CL.
Так как точка L равноудалена от концов отрезка АС, то она лежит на серединном перпендикуляре к отрезку АС. То есть
точка L совпадает с точкой D.
Тогда четырехугольник ABCD вписан в окружность. Значит суммы противоположных углов в нем равны 180°.
∠ADC = 180° - ∠ABC = 180° - 44° = 136°