Так как сумма углов любого треугольника равна 180 градусов, то внешний угол будет равен 236°-180°=56°. Это так. Значит ВНУТРЕННИЙ угол треугольника, смежный с внешним, будет равен 180°-56°=124°. Это ТУПОЙ угол, и значит это угол при ВЕРШИНЕ равнобедренного треугольника. Тогда углы при основании равны (180°-124°):2=28°. ответ: углы треугольника равны 124°,28° и 28°.
Или так: Данный нам внешний угол - смежный с тупым внутренним(124°), то есть с углом при вершине, противоположной основанию. Внешний угол равен сумме двух внутренних, не смежных с ним (равные углы при основании). Значит углы при основании равны 56°:2=28°.
Доказательство:
Т.к. ABCD - параллелограмм, то AB//CD и AD//BC.
∠ECD = ∠CEB как накрест лежащие при параллельных прямых AB и CD и секущей EC.
∠EDC = ∠DEA как накрест лежащие при параллельных прямых AB и CD и секущей ED.
Т.к. EC = ED , то ΔECD - равнобедренный с основанием CD.
Значит ∠ECD = ∠EDC как углы при основании.
Следовательно ∠CEB = ∠DEA
ΔEBC = ΔEAD по двум сторонам и углу между ними (EB = EA по условию.)
См. рисунок 2.
Из равенства треугольников EBC и EAD следует, что ∠EBC = ∠EAD
и ∠BCE = ∠ADE
∠BCD = ∠BCE + ∠ECD
∠ADC = ∠ADE + ∠EDC
Следовательно ∠BCD = ∠ADC
Продолжим сторону AD влево.
∠FAB = ∠ABC как накрест лежащие при параллельных прямых AD и BC и секущей AB.
∠FAB = ∠ADC как соответственные при параллельных прямых AB и DC и секущей AD
Собирая все вместе получаем, что ∠ABC = ∠BCD = ∠CDA = ∠DAB
Получается, что ABCD - параллелограмм в котором все углы равны. Следовательно ABCD - прямоугольник
Тогда углы при основании равны (180°-124°):2=28°.
ответ: углы треугольника равны 124°,28° и 28°.
Или так: Данный нам внешний угол - смежный с тупым внутренним(124°), то есть с углом при вершине, противоположной основанию. Внешний угол равен сумме двух внутренних, не смежных с ним (равные углы при основании). Значит углы при основании равны 56°:2=28°.