от точки А откладываем циркулем расстояние равное основанию . На пересечении получим точку В. Ав - основание
строим срединный перпендикуляр к отрезку АВ. Циркулем (радиус больше половины основания) проводим две окружности из точек А и В. Окружности пересекуться в двух точках. Соединяем их между собой и получим срединный перпендикуляр или высоту этого треугольника.
От точки пересечения основания АВ и срединного перпендикуляра - например О - циркулем откладываем окружность равную высоте данного треугольника. Эта окружность пересечется со срединным перпендикуляром (или высотой треугольника в какой то точке. Обозначим её С
Равнобедренный треугольник — это треугольник, в котором две стороны равны между собой по длине. Равные стороны называются боковыми, а последняя — основанием. По определению, правильный треугольник также является равнобедренным, но обратное утверждение неверно.
Свойства Углы, противолежащие равным сторонам равнобедренного треугольника, равны между собой. Также равны биссектрисы, медианы и высоты, проведённые из этих углов. Биссектриса, медиана, высота и серединный перпендикуляр, проведённые к основанию, совпадают между собой. Центры вписанной и описанной окружностей лежат на этой линии.
В равнобедренном треугольнике углы при основании равны
Пусть a — длина двух равных сторон равнобедренного треугольника, b — длина третьей стороны, α и β — соответствующие углы, R — радиус описанной окружности, r — радиус вписанной.
Признаки Углы при основании равны. Две высоты равны. Две медианы равны. Две биссектрисы равны
строим прямую
на ней откладываем точку А
от точки А откладываем циркулем расстояние равное основанию . На пересечении получим точку В. Ав - основание
строим срединный перпендикуляр к отрезку АВ. Циркулем (радиус больше половины основания) проводим две окружности из точек А и В. Окружности пересекуться в двух точках. Соединяем их между собой и получим срединный перпендикуляр или высоту этого треугольника.
От точки пересечения основания АВ и срединного перпендикуляра - например О - циркулем откладываем окружность равную высоте данного треугольника. Эта окружность пересечется со срединным перпендикуляром (или высотой треугольника в какой то точке. Обозначим её С
Соединим точки АВС- это искомый треугольник
Равнобедренный треугольник — это треугольник, в котором две стороны равны между собой по длине. Равные стороны называются боковыми, а последняя — основанием. По определению, правильный треугольник также является равнобедренным, но обратное утверждение неверно.
Свойства Углы, противолежащие равным сторонам равнобедренного треугольника, равны между собой. Также равны биссектрисы, медианы и высоты, проведённые из этих углов. Биссектриса, медиана, высота и серединный перпендикуляр, проведённые к основанию, совпадают между собой. Центры вписанной и описанной окружностей лежат на этой линии.В равнобедренном треугольнике углы при основании равны
Признаки Углы при основании равны. Две высоты равны. Две медианы равны. Две биссектрисы равныПусть a — длина двух равных сторон равнобедренного треугольника, b — длина третьей стороны, α и β — соответствующие углы, R — радиус описанной окружности, r — радиус вписанной.