1) площадь прямоугольника = 2 * 4 = 8 см² Sквадрата = d² / 2 d = √2S (всё под корнем) d = √2*8 = √16 = 4 диагональ квадрата - 4 см
2) не уверена, но вроде можно так. Дан ромб ABCD и AB=AC Стороны ромба равны (по определению) AB=BC=CD=AD Поэтому AB=BC=AC Следовательно треугольник АВС равносторонний (правильный) (по определению равностороннего треугольника) Все углы равностороннего треугольника равны 60 градусов, поэтому угол В равен 60 градусов (острый угол ромба)
Пусть ABCD - данный параллелограмм, а A', B', C', D' - точки, в которые переходят A, B, C, D. Т.к. при параллельном переносе плоскость переходит в параллельную ей плоскость (или в себя), то плоскость α'В'С'D' параллельна плоскости αВCD.Т. к. при параллельном переносе точки смещаются по параллельным (или совпадающим) прямым на одно и то же расстояние, то AA' || BB' || CC' || DD' и AA' = BB' = CC' = DD'.Так что в четырехугольнике AA'D'D противолежащие стороны параллельны и равны, а, значит, AA'D'D — параллелограмм. Тогда A'D' = AD и A'D' || AD.Аналогично A'B' = AB и A'B' || AB; C'D' = CD и C'D' || CD; B'C' = BC и B'C' || BC.Т. к. две прямые, параллельные третьей, параллельны, то получаем, что A'D' || B'C', A'B' || C'D'.А, значит, A'B'C'D' — параллелограмм, равный параллелограмму ABCD (т.к. соответствующие стороны равны). Что и требовалось доказать.
Sквадрата = d² / 2
d = √2S (всё под корнем)
d = √2*8 = √16 = 4
диагональ квадрата - 4 см
2) не уверена, но вроде можно так.
Дан ромб ABCD и AB=AC
Стороны ромба равны (по определению) AB=BC=CD=AD
Поэтому AB=BC=AC
Следовательно треугольник АВС равносторонний (правильный) (по определению равностороннего треугольника)
Все углы равностороннего треугольника равны 60 градусов, поэтому угол В равен 60 градусов (острый угол ромба)
Sромба = 1/2D² * tg(60°/2) = 1/2 * 10² * tg30 ° = 1/2 * 100 * √3/3 (дробь под корнем) = 50√3/3 (дробь под корнем)
я старалась :DDD