Основанием пирамиды является прямоугольный треугольник с катетом а и прилегающим к нему острым углом α. Две боковые грани, содержащие катеты этого треугольника, перпендикулярны плоскости основания, а третья наклонена к ней под углом β. Найдите объем пирамиды.
========
Пусть в данной пирамиде АВС - основание. угол С=90°, ВС=а, ∠АВС=α, MC⊥(ABC) – высота пирамиды. Угол между АВС и АМВ=β.
Формула объёма пирамиды V=S•H:3
Угол МНС - линейный угол угла между плоскостями основания и грани АМВ и равен углу между перпендикулярами, проведенными к одной точке на АВ.
МН - наклонная, перпендикулярна АВ, СН - её проекция на АВС.⇒ По т. о 3-х перпендикулярах угол СНВ=90°, а СН - высота ∆ АВС
Основанием пирамиды является прямоугольный треугольник с катетом а и прилегающим к нему острым углом α. Две боковые грани, содержащие катеты этого треугольника, перпендикулярны плоскости основания, а третья наклонена к ней под углом β. Найдите объем пирамиды.
========
Пусть в данной пирамиде АВС - основание. угол С=90°, ВС=а, ∠АВС=α, MC⊥(ABC) – высота пирамиды. Угол между АВС и АМВ=β.
Формула объёма пирамиды V=S•H:3
Угол МНС - линейный угол угла между плоскостями основания и грани АМВ и равен углу между перпендикулярами, проведенными к одной точке на АВ.
МН - наклонная, перпендикулярна АВ, СН - её проекция на АВС.⇒ По т. о 3-х перпендикулярах угол СНВ=90°, а СН - высота ∆ АВС
S=a•b•sinα:2 ⇒
S(АВС)=AB•BC•sinα:2
АВ=ВС:cosα=a:cosα
S(АВС)=(a:cosα)•a•sinα:2=a²sinα:2cosα
H=MC=CH•tgβ
CH=BC•sinα=a•sinα
H=a•sinα•tgβ
V=(a²•sinα:2cosα)•a•sinα•tgβ:3⇒
ответ:
:
Две сферы.
V = 500п/3 ед. кб.
d = 10 ед.
Найти:V - ?
Решение:R1 - радиус первой сферы.
R2 - радиус второй сферы.
Составим уравнение, с которого узнаем, чему равен радиус R1
Пусть х - радиус R1
V сферы = 4/3пR^3 = 500п/3
В уравнении число п нам не нужно, так как при вычислении объёма сферы, видео, что число п не вычислялось:
4/3 * х^3 = 500/3
х^3 = 125
х^3 = 5^3
х = 5
Итак, R = 5 см
Так как d = 10 см => R1 = R2 = 5 см, так как R1 + R2 = 5 + 5 = 10 см
Из этого =>, что две сферы касаются внешним образом.
=> сферы образуют одну общую точку, но они не образуют никакой фигуры, то есть V = 0
ответ: 0