Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.
Объяснение:
Рисунок прилагается.
Дано: ABC прямоугольный треугольник, ∠ С = 90°, CH- высота, AH = 2 см - проекция катета AC на гипотенузу, BH = 18 см - проекция катета BC на гипотенузу.
Найти катеты AC и BC.
Обозначим для удобства катеты AC = a, BC = b, проекции катетов AH = a₁, BH = b₁, высоту CH = h.
Высота в прямоугольном треугольнике, опущенная на гипотенузу, равна среднему пропорциональному проекций катетов на гипотенузу.
h² = a₁*b₁ = 2 * 18 = 36; h = 6
⇒ Высота треугольника, опущенная на гипотенузу CH = h = 6 см.
Рассмотрим треугольники АВС и АВЕ. У них угол В- общий, угол ВАЕ=углу ВСА. Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны. Тогда АВ:АЕ=ВС:АВ АВ²=АЕ*ВС АВ³=4*(4+12)=64 АВ=√64=8 см Площадь треугольника равна половине произведения его высоты на сторону, к которой эта высота проведена. Опустим высоту СН на прямую ВА, содержащую сторону АВ треугольника. . Треугольник СВН - прямоугольный, где СН - катет, противолежащий углу 30°. СН=ВС:2=8 см S (АВС)=СН*АВ:2=8*8:2=32 см²
Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.
Объяснение:
Рисунок прилагается.
Дано: ABC прямоугольный треугольник, ∠ С = 90°, CH- высота, AH = 2 см - проекция катета AC на гипотенузу, BH = 18 см - проекция катета BC на гипотенузу.
Найти катеты AC и BC.
Обозначим для удобства катеты AC = a, BC = b, проекции катетов AH = a₁, BH = b₁, высоту CH = h.
Высота в прямоугольном треугольнике, опущенная на гипотенузу, равна среднему пропорциональному проекций катетов на гипотенузу.
h² = a₁*b₁ = 2 * 18 = 36; h = 6
⇒ Высота треугольника, опущенная на гипотенузу CH = h = 6 см.
Из прямоугольного ΔACH по теореме Пифагора:
a² = h² + a₁² = 6² + 2² = 36 + 4 = 40; a = √40 = 2√10
Катет AC = 2√10 см/
Из прямоугольного ΔBCH по теореме Пифагора:
b² = h² + b₁² = 6² + 18² = 36 + 324 = 360; b = √360 = 6√10
Катет BC = 6√10 см.
Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.
У них угол В- общий, угол ВАЕ=углу ВСА.
Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.
Тогда АВ:АЕ=ВС:АВ
АВ²=АЕ*ВС
АВ³=4*(4+12)=64
АВ=√64=8 см
Площадь треугольника равна половине произведения его высоты на сторону, к которой эта высота проведена.
Опустим высоту СН на прямую ВА, содержащую сторону АВ треугольника. .
Треугольник СВН - прямоугольный, где СН - катет, противолежащий углу 30°.
СН=ВС:2=8 см
S (АВС)=СН*АВ:2=8*8:2=32 см²