Итак, мы имеем вектор a{3;-2} и вектор b{1;-2}. Умножение вектора на число: p*a=(pXa;pYa;), где p - любое число. В нашем случае имеем: вектор 5а{15;-10} и вектор 9b{9;-18}. Разность векторов : a-b=(Xa-Xb;Ya-Yb). В нашем случае имеем: вектор c=5а-9b={15-9;-10-(-18)}={6;8}. Итак, мы имеем вектор с{6;8}. Модуль или длина вектора: |c|=√(Xc²+Yc²) или |с|=√(36+64)=10. Координаты вектора ab равны разности соответствующих координат точек его конца и начала ab{x2-x1;y2-y1). В нашем случае координаты вектора с известны: Xc=6 и Yc=8. Известны и координаты его конца: Xm=3 и Ym=2.Пусть точка N - начало вектора с. Зная, что Xc=Xm-Xn и Yc=Ym-Yn, находим координаты начала вектора с (точки N). Эти координаты будут: Xn=Xm-Xc или Xn=3-6=-3 и Yn=Ym-Yc или Yn=2-8=-6. Остается только на координатной плоскости отметить две точки: N(-3;-6) и M(3;2). Соединив эти две точки, получим искомый вектор С.
Дана правильная шестиугольная пирамида со стороной основания а = 10 см.
Длина отрезка, соединяющего вершину пирамиды с центром основания (а это высота пирамиды Н), равна √69 .
Найти: a) боковое ребро L и апофему A;
Проекция бокового ребра на основание равна радиусу описанной окружности и равна стороне основания.
L = √(69 + 100) = √169 = 13.
A = √(169 - (10/2)²) = √(169 - 25) = √144 = 12.
б) боковую поверхность: Sбок = (1/2)РА = (1/2)*6*10*12 = 360 кв.ед.
в) полную поверхность пирамиды.
Sосн = 3√3*100/2 = 150√3 кв.ед.
S = So + Sбок = (150√3 + 360) кв.ед.
Умножение вектора на число: p*a=(pXa;pYa;), где p - любое число.
В нашем случае имеем: вектор 5а{15;-10} и вектор 9b{9;-18}.
Разность векторов : a-b=(Xa-Xb;Ya-Yb).
В нашем случае имеем: вектор c=5а-9b={15-9;-10-(-18)}={6;8}.
Итак, мы имеем вектор с{6;8}.
Модуль или длина вектора: |c|=√(Xc²+Yc²) или |с|=√(36+64)=10.
Координаты вектора ab равны разности соответствующих координат точек его конца и начала ab{x2-x1;y2-y1).
В нашем случае координаты вектора с известны: Xc=6 и Yc=8. Известны и координаты его конца: Xm=3 и Ym=2.Пусть точка N - начало вектора с. Зная, что Xc=Xm-Xn и Yc=Ym-Yn, находим координаты начала вектора с (точки N). Эти координаты будут: Xn=Xm-Xc или Xn=3-6=-3 и Yn=Ym-Yc или Yn=2-8=-6.
Остается только на координатной плоскости отметить две точки: N(-3;-6) и M(3;2).
Соединив эти две точки, получим искомый вектор С.