Даны две стороны треугольника EBK и высота BD, проведённая к стороне EK.
Даны следующие возможные шаги построения треугольника:
1. провести прямую.
2. Провести луч.
3. Провести отрезок.
4. Провести окружность с данным центром и радиусом.
5. На данном луче от его начала отложить отрезок, равный данному.
6. Построить угол, равный данному.
7. Построить биссектрису угла.
8. Построить перпендикулярную прямую.
9. Построить середину отрезка.
1. Напиши, в каком порядке следует выполнить данные шаги в этом задании
(один и тот же шаг может повторяться, номер шага запиши без точки):
2. У этого задания:
может не быть решения
иногда могут быть два решения
может быть только одно решение
A+B+C=180°,
а также сумму углов треугольника AOC:
A/2+C/2+∠AOC=180°.
Умножая второе равенство на 2 и вычитая из полученного равенства первое, получаем
2∠AOC-B=180; ∠AOC=90°+B/2
2. Справедливо второе равенство. Для доказательства обращаем внимание на то, что если высоты AA_1 и CC_1, то в четырехугольнике C_1BA_1O углы C_1 и A_1 - прямые⇒B+∠C_1OA_1=180°⇒
∠AOC=∠C_1OA_180°-B.
Замечание. По умолчанию мы считали известным, что треугольник остроугольный.
A(-x1; y1); B(x1; y1); |AB| = 2x1
Точка С лежит между ними. C(x2; y2); -x1 < x2 < x1
|AC|^2 = (x2+x1)^2 + (y1-y2)^2
|BC|^2 = (x2-x1)^2 + (y1-y2)^2
По теореме Пифагора
|AC|^2 + |BC|^2 = |AB|^2
(x2+x1)^2 + (y1-y2)^2 + (x2-x1)^2 + (y1-y2)^2 = 4x1^2
x2^2 + 2x1*x2 + x1^2 + 2(y1-y2)^2 + x2^2 - 2x1*x2 + x1^2 - 4x1^2 = 0
2x2^2 + 2(y1-y2)^2 - 2x1^2 = 0
x2^2 + (y1-y2)^2 - x1^2 = 0
(y1 - y2)^2 = x1^2 - x2^2
Вспомним, что это парабола y = x^2, и y1 = x1^2; y2 = x2^2
(x1^2 - x2^2)^2 = x1^2 - x2^2
Число равно своему квадрату, значит, оно равно 0 или 1.
(x1^2 - x2^2) = (y1 - y2) = 0 или 1
Но 0 разность ординат точек А и С равняться не может, значит,
y1 - y2 = 1
Но разность ординат - это и есть высота треугольника.