Решение: Пусть О – центр окружности, пусть Р – ближняя из точек пересечения окружности и отрезка АО. Пусть N – точка пересечения
Тогда прямоугольные треугольники OAC и ОAB равны за катетом и гипотенузой(ОF=ОA, ОC=ОB – как радиусы).Значит из равности треугольников,AC=AB
угол АOC=угол AOB(то же самое угол РOC=угол РOB)
угол OAC=угол OAB(то же самое угол OРC=угол OРB ), значит АP – биссектриса угла А,(то же самое, что AN - биссектриса угла А )
AC=AB – значит треугольник ABC – равнобедренный
Биссектриса равнобедренного треугольника, проведенная к основанию, есть его высотой и медианой
треугольник ABC – равнобедренный, AN - биссектриса угла А, значит
угол ANB= угол ANC=90 градусов
треугольник BOP – равнобедренный (BO=OP – как радиусы),
значит угол PBO= угол BPO
Пусть угол BOA= угол BOP= угол BON=х.
Сумма углов треугольника равна 180.
Сумма острых углов прямоугольного треугольника равна 90 градусов.
Тогда с треугольника BOP
угол PBO= угол BPO=(180 -х)\2=90-х\2
с треугольника AOB угол OAB=90-х
угол ABP= угол OAB- угол PBO=90-х-(90-х\2)=x\2
угол PBN=90-угол OAB- угол ABP=90-(90-x)-x\2=x\2
угол ABP= угол PBN, значит BP – биссектриса угла B.
Итак, точка P- точка пересечения биссектрис треугольника ABC, что и требовалось доказать.
1) см. рис
А и А1 точки пересечения окружностей с центрами О и К
АР перпендикуляр на продолжение ОК
АР=у
ОР=х
ОА=4
КА=8
ОК=6
х²+у²=4²=16
(х+6)²+у²=8²=64 ⇒ у²=64-(х+6)², подставляем в первое
х²+64-(х+6)²=16
х²+64-х²-12х-36-16=0
12х=12
х=1
у=√(16-1)=√15
l -расстояние от т.О до ц. окр. М касающихся одновременно двух данных, т.е. в т.А и А1 (необходимо найти МА)
МА²=(х+l)²+у²=(1+l)²+15
2)
АВС - треугольник, а=60, В=50, С=70, т.Н пересечение
АА1, ВВ1, СС1 высоты.
<АНС1=<СНА1=<3 (вертикальные)
<BHC1=<CHB1=<1 (вертикальные)
<BHA1=<AHC1=<2 (вертикальные)
ΔВНА1 подобен ΔВСВ1 ⇒<BHA1=<С=70
ΔВНС1 подобен ΔВАВ1 ⇒<BHC1=<А=60
ΔСНА1 полобен ΔСВС1 ⇒<СНА1=<В=50
3) см рис. 2
<α=180-90-48=42°
Решение: Пусть О – центр окружности, пусть Р – ближняя из точек пересечения окружности и отрезка АО. Пусть N – точка пересечения
Тогда прямоугольные треугольники OAC и ОAB равны за катетом и гипотенузой(ОF=ОA, ОC=ОB – как радиусы).Значит из равности треугольников,AC=AB
угол АOC=угол AOB(то же самое угол РOC=угол РOB)
угол OAC=угол OAB(то же самое угол OРC=угол OРB ), значит АP – биссектриса угла А,(то же самое, что AN - биссектриса угла А )
AC=AB – значит треугольник ABC – равнобедренный
Биссектриса равнобедренного треугольника, проведенная к основанию, есть его высотой и медианой
треугольник ABC – равнобедренный, AN - биссектриса угла А, значит
угол ANB= угол ANC=90 градусов
треугольник BOP – равнобедренный (BO=OP – как радиусы),
значит угол PBO= угол BPO
Пусть угол BOA= угол BOP= угол BON=х.
Сумма углов треугольника равна 180.
Сумма острых углов прямоугольного треугольника равна 90 градусов.
Тогда с треугольника BOP
угол PBO= угол BPO=(180 -х)\2=90-х\2
с треугольника AOB угол OAB=90-х
угол ABP= угол OAB- угол PBO=90-х-(90-х\2)=x\2
угол PBN=90-угол OAB- угол ABP=90-(90-x)-x\2=x\2
угол ABP= угол PBN, значит BP – биссектриса угла B.
Итак, точка P- точка пересечения биссектрис треугольника ABC, что и требовалось доказать.
1) см. рис
А и А1 точки пересечения окружностей с центрами О и К
АР перпендикуляр на продолжение ОК
АР=у
ОР=х
ОА=4
КА=8
ОК=6
х²+у²=4²=16
(х+6)²+у²=8²=64 ⇒ у²=64-(х+6)², подставляем в первое
х²+64-(х+6)²=16
х²+64-х²-12х-36-16=0
12х=12
х=1
у=√(16-1)=√15
l -расстояние от т.О до ц. окр. М касающихся одновременно двух данных, т.е. в т.А и А1 (необходимо найти МА)
МА²=(х+l)²+у²=(1+l)²+15
2)
АВС - треугольник, а=60, В=50, С=70, т.Н пересечение
АА1, ВВ1, СС1 высоты.
<АНС1=<СНА1=<3 (вертикальные)
<BHC1=<CHB1=<1 (вертикальные)
<BHA1=<AHC1=<2 (вертикальные)
ΔВНА1 подобен ΔВСВ1 ⇒<BHA1=<С=70
ΔВНС1 подобен ΔВАВ1 ⇒<BHC1=<А=60
ΔСНА1 полобен ΔСВС1 ⇒<СНА1=<В=50
3) см рис. 2
<α=180-90-48=42°