Пусть х км/ч первоначальная скорость машины, у л - скорость вытекания воды, А л - воды вмещается в машину.Тогда А/у ч - время расхода воды, А*х/у км - длина дороги, которую можно полить.
Тогда при увеличении скорости движения в 2 раза, а скорости вытекания воды в 3 раза получим, А/(3у) ч - время расхода воды, (А*2х)/(3у) =4 км - длина дороги.
Если начальную скорость движения увеличить в 3 раза, а скорость вытекания воды увеличить в 2 раза, получим А/(2у) ч - время расхода воды, (А*3х)/(2у) км - длина дороги, которую можно полить.
Из выражения (А*2х)/(3у)=4 выразим А=(4*3у)/(2х)
подставим А в выражение (А*3х)/(2у)=(4*3у*3х)/(2х*2у)=(4*3*3)/(2*2)=9 км
А не так-то и просто :) Пусть через вершину C проведена прямая, параллельная AB, и A2 - это точка пересечения этой прямой c продолжением прямой AA1; Сразу видно две пары подобных трегольников Треугольник APC1 подобен треугольнику A2PC; что означает CA2/AC1 = CP/PC1; Треугольник AA1B подобен треугольнику CA1A2, что означает CA1/A1B = CA2/AB = CA2/(2*AC1) = (1/2)*CP/PC1; То же самое можно сделать "с другой стороны медианы" (отметить на CA2 точку B2 пересечения с прямой BB1, и рассмотреть аналогичную пару подобных треугольников. Однако можно и это не делать - у вершин A и B можно просто поменять местами обозначения A <=> B) то есть CB1/B1A = (1/2)*CP/PC1 = CA1/A1B; то есть A1B1 II AB по теореме Фалеса (ну, или в силу доказанного подобия треугольников ABC и A1B1C, если хотите).
9км
Объяснение:
Пусть х км/ч первоначальная скорость машины, у л - скорость вытекания воды, А л - воды вмещается в машину.Тогда А/у ч - время расхода воды, А*х/у км - длина дороги, которую можно полить.
Тогда при увеличении скорости движения в 2 раза, а скорости вытекания воды в 3 раза получим, А/(3у) ч - время расхода воды, (А*2х)/(3у) =4 км - длина дороги.
Если начальную скорость движения увеличить в 3 раза, а скорость вытекания воды увеличить в 2 раза, получим А/(2у) ч - время расхода воды, (А*3х)/(2у) км - длина дороги, которую можно полить.
Из выражения (А*2х)/(3у)=4 выразим А=(4*3у)/(2х)
подставим А в выражение (А*3х)/(2у)=(4*3у*3х)/(2х*2у)=(4*3*3)/(2*2)=9 км
Пусть через вершину C проведена прямая, параллельная AB, и A2 - это точка пересечения этой прямой c продолжением прямой AA1;
Сразу видно две пары подобных трегольников
Треугольник APC1 подобен треугольнику A2PC; что означает
CA2/AC1 = CP/PC1;
Треугольник AA1B подобен треугольнику CA1A2, что означает
CA1/A1B = CA2/AB = CA2/(2*AC1) = (1/2)*CP/PC1;
То же самое можно сделать "с другой стороны медианы" (отметить на CA2 точку B2 пересечения с прямой BB1, и рассмотреть аналогичную пару подобных треугольников. Однако можно и это не делать - у вершин A и B можно просто поменять местами обозначения A <=> B)
то есть
CB1/B1A = (1/2)*CP/PC1 = CA1/A1B;
то есть A1B1 II AB по теореме Фалеса (ну, или в силу доказанного подобия треугольников ABC и A1B1C, если хотите).