В основі прямої призми лежить ромб з меншою діагоналлю, що дорівнює а , і гострим кутом 2 а. Через меншу діагональ нижньої основи і протилежну вершину верхньої основи проведено переріз призми
площиною. Перерізом є рівнобедрений трикутник з кутом при вершині. Визначте об’єм призми.
№1
Дано:
Угол АСВ=34°;
Угол СВР=18°;
Найти: угол АОВ.
Углы АСВ и АРВ – вписанные и опираются на одну и ту же дугу АВ, следовательно угол АРВ=угол АСВ=34°.
Сумма углов в любом треугольнике равна 180°.
Тогда угол ВОР=180°–угол ОРВ–угол ОВР=180°–34°–18°=128°.
Углы ВОР и АОВ – смежные, значит в сумме дают 180°.
Тогда угол АОВ=180°–угол ВОР=180°–128°=52°.
ответ: 52°
№2
Дано:
РNMO – равнобедренная трапеция, описанная вокруг окружности;
Точки А, В, С, D – точки касания;
Угол NPO=50°.
Найти: дуги АВ, ВС, СD, AD.
Углы при боковой стороне трапеции в сумме равны 180°, тогда угол РNM=180°–угол NPO=180°–50°=130°.
Углы при основании равнобедренной трапеции равны, то есть угол МОР=угол NPO=50°; угол OMN=угол PNM=130°.
Угол между двумя касательными, проведёнными из одной точки, равен разности 180° и градусной меры меньшей дуги, заключённой между данными касательными.
То есть:
Угол NPO=180°–дуга ВС => дуга ВС=180°–угол NPO=180°–50°=130°;
Угол МОР=180°–дуга CD => дуга CD=180°–угол МОР=180°–50°=130°;
Угол РNM=180°–дуга АВ => дуга АВ=180°–угол PNM=180°–130°=50°;
Угол OMN=180°–дуга AD => дуга AD=180°–угол OMN=180°–130°=50°.
ответ: 50°; 50°; 130°; 130°.
Объяснение:
60) S =(PK+MN)· h/2= 10·10=100 так как средняя линия равна половине сумм оснований, а это 2 радиуса по 5 единиц и высота там равна диаметру -10 ед.
59) ОК =MN/2=20/2=10 так как это радиус окружности
58) ML= MN+LK-NK=2+7-6=3 cложим все части сторон получим : 2+7+6+3=18 (частей) следовательно периметр делим на 18 . 54:18=3 (ед) - составляет 1 часть . Далее MN= 2·3=6 NK=6·3=18 LK=7·3=21 ML=3·3=9
57) АD = 15-8=7 так как сумма противоположных сторон равна 6+9=15 следовательно по свойству вписанной окружности и других противоположных сторон =15! P= BC+CD+AD+AB=8+9+7+6=30 ед