Если угол при основании 45 градусов, то прямоугольный треугольник, где высота трапеции стороной этого треугольника, а бедро трапеции гипотенузой - равнобедренный, так как второй угол этого прямоугольного треугольника тоже 90-45=45 градусов. Значит, кусочек нижнего основания трапеции, отсекаемый ее высотой равен тоже 3 см. Проведем вторую высоту трапеции, тогда получим, что высоты делят большое основание на три части - две по 3 см и одна - как малое основание 5 см. Следовательно, большое основание имеет размер 3+5+3=11 см.
Найти длину биссектрисы угла А.
Решение.
Биссектриса угла треугольника делит противоположную сторону на отрезки, пропорциональные сторонам угла.
То есть ВН/НС=12/15 = 4/5. => ВН=8, НС=10.
<BAH=<CAH (АН - биссектриса).
Тогда по теореме косинусов:
Cos(A/2) = (АН²+12² - 8²)/(2*АН*12) - из треугольника ВАН. (1)
Cos(A/2) = (АН²+15² - 10²)/2*АН*15) - из треугольника САН. (2)
Приравняем (1) и (2):
(АН²+125)/30АН = (АН²+80)/24АН => 4(АН²+125)=5(АН²+80) =>
АН²=100. АН=10.
ответ: биссектриса АН=10.