Даны основные конструкции, которые рассмотрены в теоретическом материале:
1. на данном луче от его начала отложить отрезок, равный данному.
2. Построение угла, равного данному.
3. Построение биссектрисы угла.
4. Построение перпендикулярных прямых.
5. Построение середины отрезка.
Составь план
деления данного отрезка на четыре части (даны циркуль, линейка, карандаш, на листе бумаги дан отрезок)
(Запиши в окошке ответа номера шагов по порядку без запятых и пустых мест, шаги могут повторяться):
Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α.
Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору
АЕ=√(AD²-DE²)=√(36²-18²)=18√3.
Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°.
Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²
п равильная четырехугольная призма - это многогранник, основания которого являются правильными четырехугольниками - квадратами, а боковые грани — равными прямоугольниками.
так как сторона квадрата ( верхнего основания призмы) противолежит углу 30 градусов, она равна половине диагонали призмы и равна 5 см. нужно теперь найти высоту призмы. для этого придется найти диагональ боковой грани из треугольника, гипотенузой в котором является диагональ призмы, а катетами сторона квадрата и диагональ боковой грани. она равна √(100 -25)= √75 =5√3теперь находим высоту призмыh² =(5√3)² -5² =√50=5√2площадь полной поверхности призмы равна площади ее четырех боковых граней плюс площадь оснований. площадь боковых граней равна4*5*5√2=100√2площадь оснований 2*5*5=50 см²
площадь полной поверхности призмы100√2 +50=50(2√2+1) см