а) ∠L - прямой ⇒ ∠TEL = ∠L = 90° - как соответственные углы при ET║LK и секущей PL. Аналогично TN║PL - по условию ⇒ ∠LNT = ∠L = 90°,
∠ETN = ∠TEL = 90° - как пары соответственных углов ⇒ четырехугольник ETNL является прямоугольником (все углы прямые, стороны попарно параллельны)
б) Если прямая проходит через середину одной стороны треугольника параллельно другой стороне, то такая прямая является средней линией. В нашем случае (см. рисунок) ET║LK, TN║PL и Т - середина гипотенузы PK по условию ⇒ ET и TN - средние линии данного треугольника,
а значит, точки Е и N также делят пополам стороны Δ: точка Е делит пополам катет PL, а точка N - соответственно катет LK ⇒
ET = LN = , TN = EL = ⇒ периметр ETNL равен: Р = 4 + 4 + 3 + 3 = 8 + 6 = 14
а) ∠L - прямой ⇒ ∠TEL = ∠L = 90° - как соответственные углы при ET║LK и секущей PL. Аналогично TN║PL - по условию ⇒ ∠LNT = ∠L = 90°,
∠ETN = ∠TEL = 90° - как пары соответственных углов ⇒ четырехугольник ETNL является прямоугольником (все углы прямые, стороны попарно параллельны)
б) Если прямая проходит через середину одной стороны треугольника параллельно другой стороне, то такая прямая является средней линией. В нашем случае (см. рисунок) ET║LK, TN║PL и Т - середина гипотенузы PK по условию ⇒ ET и TN - средние линии данного треугольника,
а значит, точки Е и N также делят пополам стороны Δ: точка Е делит пополам катет PL, а точка N - соответственно катет LK ⇒
ET = LN = , TN = EL = ⇒ периметр ETNL равен: Р = 4 + 4 + 3 + 3 = 8 + 6 = 14
ответ: периметр равен 14 см