1)Задачи на построение пониманию учащимися происхождения различных геометрических фигур, возможности их преобразования - всё это является важной предпосылкой развития пространственного мышления школьников. Эти задачи развивают логическое мышление, геометрическую интуицию.
2)Целесообразно отметить следующие особенности условий задач на построение: в одних задачах данные фигуры могут быть без изменения сущности задачи заменены их мерами. Таковы, например, задачи построить треугольник по стороне, медиане другой стороны и радиусу описанной окружности; построить параллелограмм по его углу и диагоналям.
3)Любые, кроме круга.
4) 1.При циркуля можно измерить любой данный отрезок и отложить такой же от точки на прямой в любую сторону.
2.При циркуля можно провести окружность с центром в любой данной точке и радиусом, равным любому данному отрезку.
5)Не разрешается. Объяснение: Так как про построении используется нелинованное линейка( для соединения точек) и циркуль ( для переноса длины отрезка)
6).(B).(A).(C)
На прямой даны точки В и А. Выставляем раствор циркуля равным отрезку АВ и с центром в точке А проводим дугу до пересечения с прямой на продолжении луча ВА. Точка пересечения С и даст второй конец отрезка ВС в два раза большего, чем АВ.
7)От точки до края круга 2см, а до другого края 10см значит 10-2=диаметр круга=8, а радиус это половина диаметра 8/2=4
О - центр окружности Три данных по условию вписанных угла изображены на рисунке красным. Соответствующие им центральные углы в два раза больше. ∠CBD = 27° ⇒ ∠CОD = 54° ∠ACD = 54° ⇒ ∠AОD = 108° ∠ADB = 62° ⇒ ∠AОB = 124° Сумма всех центральных углов вокруг точки О равна 360°, и это нам найти четвёртый центральный угол ∠ВОС ∠ВОС = 360°-54°-108°-124° = 74° Теперь можно найти углы четырёхугольника, снова учитывая, что вписанный угол в два раза меньше центрального, опирающегося на ту же дугу. ∠ABC = 1/2(108+54) = 54+27 = 81° ∠BCD = 1/2(108+124) = 54+62 = 116° ∠CDA = 1/2(124+74) = 62+37 = 99° ∠DAB = 1/2(74+54) = 37+27 = 64°
1)Задачи на построение пониманию учащимися происхождения различных геометрических фигур, возможности их преобразования - всё это является важной предпосылкой развития пространственного мышления школьников. Эти задачи развивают логическое мышление, геометрическую интуицию.
2)Целесообразно отметить следующие особенности условий задач на построение: в одних задачах данные фигуры могут быть без изменения сущности задачи заменены их мерами. Таковы, например, задачи построить треугольник по стороне, медиане другой стороны и радиусу описанной окружности; построить параллелограмм по его углу и диагоналям.
3)Любые, кроме круга.
4) 1.При циркуля можно измерить любой данный отрезок и отложить такой же от точки на прямой в любую сторону.
2.При циркуля можно провести окружность с центром в любой данной точке и радиусом, равным любому данному отрезку.
5)Не разрешается. Объяснение: Так как про построении используется нелинованное линейка( для соединения точек) и циркуль ( для переноса длины отрезка)
6).(B).(A).(C)
На прямой даны точки В и А. Выставляем раствор циркуля равным отрезку АВ и с центром в точке А проводим дугу до пересечения с прямой на продолжении луча ВА. Точка пересечения С и даст второй конец отрезка ВС в два раза большего, чем АВ.
7)От точки до края круга 2см, а до другого края 10см значит 10-2=диаметр круга=8, а радиус это половина диаметра 8/2=4
8)не знаю
9)Допустим: а=3см, b=1,5см (на фото ответ)
10)дано:
а=12 см
b=5 см
а) a+b=17 см
б) a-b=7 см
в) 2а=24 см
г) a+2b=22 см
д) 2a+b=29 см
Три данных по условию вписанных угла изображены на рисунке красным.
Соответствующие им центральные углы в два раза больше.
∠CBD = 27° ⇒ ∠CОD = 54°
∠ACD = 54° ⇒ ∠AОD = 108°
∠ADB = 62° ⇒ ∠AОB = 124°
Сумма всех центральных углов вокруг точки О равна 360°, и это нам найти четвёртый центральный угол ∠ВОС
∠ВОС = 360°-54°-108°-124° = 74°
Теперь можно найти углы четырёхугольника, снова учитывая, что вписанный угол в два раза меньше центрального, опирающегося на ту же дугу.
∠ABC = 1/2(108+54) = 54+27 = 81°
∠BCD = 1/2(108+124) = 54+62 = 116°
∠CDA = 1/2(124+74) = 62+37 = 99°
∠DAB = 1/2(74+54) = 37+27 = 64°