1.Сумма углов параллелограмма, прилежащих к одной стороне равна 180°.
2. Противолежащие углы и стороны параллелограмма равны.
а)∠А=84°, значит ∠В=180-84=96°
∠А=∠С=84° и ∠В=∠D=96°
б)∠А-∠В=55°
∠В примем за х, тогда ∠А=55+х. Составляем уравнение х+55+х=180
2х=180-55=125
х=62,5°=∠В
∠А=55+62,5=117,5°
∠С=∠А=117,5° и ∠D=∠В=62,5°
в) ∠А-∠С=142°, если это противолежащие углы, то их разность должна быть равна 0, если это два угла одной стороны, то маркировка параллелограмма будет АСВD, а не АВСD и решается также как предыдущее б)
DOA = 70°. Дано в задаче.
BOC = DOA = 70°. Вертикальные углы равны (1).
DOC = 180° - 70° - 110°. Смежные углы в сумме дают 180° (2).
AOB = DOC = 110°. (1).
ODC = (180° - 110°) / 2 = 35°. Сумма углов треугольника равна 180° (3). Если треугольник равнобедренный, то углы при его основаниях равны (4).
ADO = 90° - 35° = 55°. Два угла составляют прямой угол (5).
OAD = ADO = 55°. (4).
OAB = 90° - 55° = 35°. (5).
OBA = OAB = 35°. (4).
OBC = 90° - 35° = 55°. (5).
OCB = OBC = 55°. (4).
Все остальные углы состоят из других и их можно посчитать по сумме. Например:
DAB = DAO + BAO = 55° + 35° = 90°.
ответ:Решается по двум свойствам параллелограмма:
1.Сумма углов параллелограмма, прилежащих к одной стороне равна 180°.
2. Противолежащие углы и стороны параллелограмма равны.
а)∠А=84°, значит ∠В=180-84=96°
∠А=∠С=84° и ∠В=∠D=96°
б)∠А-∠В=55°
∠В примем за х, тогда ∠А=55+х. Составляем уравнение х+55+х=180
2х=180-55=125
х=62,5°=∠В
∠А=55+62,5=117,5°
∠С=∠А=117,5° и ∠D=∠В=62,5°
в) ∠А-∠С=142°, если это противолежащие углы, то их разность должна быть равна 0, если это два угла одной стороны, то маркировка параллелограмма будет АСВD, а не АВСD и решается также как предыдущее б)
∠С=х ∠А=х+142
уравнение х+х+142=180
2х=180-142=38
х=19°=∠С и противолежащий ему угол
∠А=19+142=161° и противолежащий ему угол
Объяснение: