Пусть M - точка пересечения BE и AD. В треугольнике BAD биссектриса перпендикулярна стороне, то есть AB = BD; (и между прочим, AM = MD), поскольку D - середина BC, то BC = 2*AB; отсюда по свойству биссектрисы AE/EC = AB/BC = 1/2; то есть EC = 2*AE; Дальше можно действовать двумя Если известны теоремы Чевы и Ван-Обеля, то быстро находится BM/ME = 3; второй это показать - надо провести через точку E прямую II BC, до пересечения с AD в точке K; Ясно, что AK/KD = AE/EC = 1/2; откуда KM = AD/2 - AD/3 = AD/6, и KM/MD = 1/3; из подобия треугольников KME и BMD следует BM = 3*ME; Теперь есть все, чтобы найти стороны. AM = 84; BM = 126; ME = 42; из прямоугольного треугольника AMB легко находится AB = 42√13; из AME => AE = 42√5; BC = 2*AB = 84√13; AC = 3*AE = 126√5;
В треугольнике BAD биссектриса перпендикулярна стороне, то есть AB = BD; (и между прочим, AM = MD), поскольку D - середина BC, то BC = 2*AB; отсюда по свойству биссектрисы AE/EC = AB/BC = 1/2; то есть EC = 2*AE;
Дальше можно действовать двумя Если известны теоремы Чевы и Ван-Обеля, то быстро находится BM/ME = 3; второй это показать - надо провести через точку E прямую II BC, до пересечения с AD в точке K;
Ясно, что AK/KD = AE/EC = 1/2; откуда KM = AD/2 - AD/3 = AD/6, и KM/MD = 1/3; из подобия треугольников KME и BMD следует BM = 3*ME;
Теперь есть все, чтобы найти стороны. AM = 84; BM = 126; ME = 42;
из прямоугольного треугольника AMB легко находится AB = 42√13;
из AME => AE = 42√5;
BC = 2*AB = 84√13;
AC = 3*AE = 126√5;
6) Проведём сечение АА1СВ через боковое ребро и апофему.
Фигура в сечении трапеция. Пусть её высота равна h. Основания как высоты в равносторонних треугольниках равны:
А1С = 6*(√3/2) = 3√3.
АВ = 12*(√3/2) = 6√3. Разница между ними равна 3√3.
Из свойств правильной треугольной пирамиды известно, что проекция бокового ребра на основание в 2 раза больше проекции апофемы.
Пусть это будут 2х и х.
Получаем 3х = 3√3, отсюда х = √3.
По условию h/x = tg 30°, тогда h = x*tg 30° = √3*(1/√3) = 1.
Отсюда апофема как гипотенуза при катете против угла 30 градусов равна 2х = 2.
Находим площадь боковой поверхности.
Sбок = 3*((6 + 12)/2)*2 = 3*18 = 48.
Площади оснований S = a²√3/4.
S1 = 6²√3/4 = 9√3.
Sо = 12²√3/4 = 36√3.
ответ: S = 48+45√3.