Белу́ха — гора. Самая высокая вершина Южной Сибири в составе Катунского хребта Алтая. Она имеет две острые пирамиды, разделенные широким седлом. Восточная пирамида, более высокая, поднимается на 4506 м над уровнем моря. Обе вершины и седло Белухи покрыты снегом. В районе Белухи находится главный центр оледенения Алтая. Со склонов Белухи спускается шесть больших длинных ледников и более двадцати малых. Первые ледники Белухи открыл Ф. В. Геблер в 1835 году. Его именем назван один из открытых им ледников. Высоту многих горных вершин, включая Белуху, определил известный сибирский исследователь, профессор Томского университета В. В. Сапожников.
3. Пусть высота будет BH(нужно отметить Н на рисунке). Проведём высоту из точки С, будет она СЕ. Т.к. трапеция равнобедренная, то АН=DE. AH=BH=4 см, ведь угол А=45°, угол Н=90°, соответственно угол В=45° и треугольникк АВН равнобедренный. Из этого, AD=4+5+4 = 13 см.
1. S = ½×(4+8)×5 = ½×6×5 = 3×5 = 15 см².
2. S=150, h=S:(½×(a+b)) = 150:(½×(9+11)) = 150:(½×20) = 150:10 = 15 см.
3. Пусть высота будет BH(нужно отметить Н на рисунке). Проведём высоту из точки С, будет она СЕ. Т.к. трапеция равнобедренная, то АН=DE. AH=BH=4 см, ведь угол А=45°, угол Н=90°, соответственно угол В=45° и треугольникк АВН равнобедренный. Из этого, AD=4+5+4 = 13 см.
Найдём площадь: S=½×(5+13)×4 = ½×18×4 = 9×4 = 36 см².
4. Пусть одна часть будет х, тогда BC=3x, AD=4x.
S=½×(3x+4x)×5 = ½×7x×5 = 3,5x×5 = 17,5x -> 17,5x = 35.
x=2 см.
AD=4x = 4×2 = 8 см.