Даны точки A(2;0); B(x;6); M(7;2) и N(x;0). Найди значение x и напиши координаты B и N, если расстояние между точками A и B такое же, как между точками M и N.
Пусть ВС=CD=х, тогда АВ=3+х. Составим и решим уравнение:
3+х+х+х=9
3х=6
х=2.
Получается, ВС=CD=2 см.
ответ: 2 см.
Задача 2.
∠1=∠3=20 градусов (т.к. соответственные);
∠1=∠4= 20 градусов (т.к. вертикальные);
∠4=90 градусов (по условию)
∠5=180-20=160 градусов.
∠2=160-90=70 градусов.
ответ: 70 градусов.
Задача 3.
Если дочертить отрезки АР, ВР, АО и ВО, можно заметить, что образовался четырехугольник. АВ и РО -его диагонали. Т.к. они точкой пересечения поделились пополам, то данная фигура - ромб. У ромба все стороны равны => АР+ВР=АО+ВО.
Допустим, у нас четырехугольная пирамида, в основании которой лежит квадрат ABCD. Высота - SO. Точка O - точка пересечения диагоналей.
1. Основание - квадрат. Площадь квадрата можно найти по формуле , где d-диагональ.
см
2. Диагонали в квадрате равны и точкой пересечения делятся пополам - OA=OB=OC=OD. Находим любой из перечисленных отрезков. 10/2=5 см
3. Рассмотрим треугольник SOC - прямоугольный, т.к. SO - высота. Мы знаем боковую грань (гипотенуза) и катет (половина диагонали). Можем найти второй катет, т.е. высоту. По теореме Пифагора: SC²=SO²+OC² 13²=SO²+5² SO²=169-25 SO²=144 SO=12 см
Задача 1.
Пусть ВС=CD=х, тогда АВ=3+х. Составим и решим уравнение:
3+х+х+х=9
3х=6
х=2.
Получается, ВС=CD=2 см.
ответ: 2 см.
Задача 2.
∠1=∠3=20 градусов (т.к. соответственные);
∠1=∠4= 20 градусов (т.к. вертикальные);
∠4=90 градусов (по условию)
∠5=180-20=160 градусов.
∠2=160-90=70 градусов.
ответ: 70 градусов.
Задача 3.
Если дочертить отрезки АР, ВР, АО и ВО, можно заметить, что образовался четырехугольник. АВ и РО -его диагонали. Т.к. они точкой пересечения поделились пополам, то данная фигура - ромб. У ромба все стороны равны => АР+ВР=АО+ВО.
Допустим, у нас четырехугольная пирамида, в основании которой лежит квадрат ABCD. Высота - SO. Точка O - точка пересечения диагоналей.
1. Основание - квадрат. Площадь квадрата можно найти по формуле
, где d-диагональ.
см
2. Диагонали в квадрате равны и точкой пересечения делятся пополам - OA=OB=OC=OD. Находим любой из перечисленных отрезков.
10/2=5 см
3. Рассмотрим треугольник SOC - прямоугольный, т.к. SO - высота.
Мы знаем боковую грань (гипотенуза) и катет (половина диагонали). Можем найти второй катет, т.е. высоту.
По теореме Пифагора:
SC²=SO²+OC²
13²=SO²+5²
SO²=169-25
SO²=144
SO=12 см