Даны точки А( 2; -1), В(-4; 3), С(5; -1), D(1; a). a) При каком значении а векторы (AB) ⃗ и (CD) ⃗ коллинеарны. b) При каком значении a векторы (AB) ⃗ и (CD) ⃗ перпендикулярны.
Формула объема пирамиды V=S•h/3, где S – площадь основания пирамиды, h - её высота.
Стороны ромба равны. По условию боковые грани наклонены к плоскости основания под углом β.
Если боковые грани пирамиды наклонены к плоскости основания под одним углом, то в основание пирамиды можно вписать окружность, а вершина пирамиды проецируется в центр этой окружности.
Центр окружности, вписанной в ромб – точка пересечения его диагоналей, а расстояние от него до сторон равно радиусу вписанной окружности.
Высота пирамиды, радиус вписанной окружности и высота боковой грани образуют прямоугольный треугольник, при этом высота боковой грани и радиус вписанной окружности образуют линейный угол между основанием и боковой гранью, т.к. по т. о 3-х перпендикулярах перпендикулярны стороне ромба (ребру двугранного угла) в одной точке.
Диаметр окружности, вписанной в ромб, перпендикулярен его сторонам, параллелен высоте ромба и равен ей. На рисунке приложения АК = высота ромба. АК=АD•sinα=a•sinα ⇒ HO=r=a•sinα•1/2. Из прямоугольного ∆ МОН высота пирамиды МО=ОН•tgβ=(a•sinα•1/2)tgβ
биссектрисы внутренних односторонних углов взаимно перпендикулярны, поэтому этот четырехугольник - заведомо прямоугольник. Чтобы он был квадратом, достаточно доказать равенство смежных сторон.
Квадрат отличается от прямоугольника тем, что симметричен относительно диагоналей.
У полученного прямоугольника противоположные вершины лежат на прямых, проходящих через середины противоположных сторон исходного прямоугольника.
Поскольку исходный прямоугольник переходит в себя при отражении относительно этих прямых, то и полученный при пересечении биссектрис прямоугольник тоже симметричен относительно этих прямых (то есть переходит в себя при отражении), то есть - относительно своих диагоналей.
ответ: V=a³•sin²α•tgβ/6
Объяснение - очень подробно:
Формула объема пирамиды V=S•h/3, где S – площадь основания пирамиды, h - её высота.
Стороны ромба равны. По условию боковые грани наклонены к плоскости основания под углом β.
Если боковые грани пирамиды наклонены к плоскости основания под одним углом, то в основание пирамиды можно вписать окружность, а вершина пирамиды проецируется в центр этой окружности.
Центр окружности, вписанной в ромб – точка пересечения его диагоналей, а расстояние от него до сторон равно радиусу вписанной окружности.
Высота пирамиды, радиус вписанной окружности и высота боковой грани образуют прямоугольный треугольник, при этом высота боковой грани и радиус вписанной окружности образуют линейный угол между основанием и боковой гранью, т.к. по т. о 3-х перпендикулярах перпендикулярны стороне ромба (ребру двугранного угла) в одной точке.
Диаметр окружности, вписанной в ромб, перпендикулярен его сторонам, параллелен высоте ромба и равен ей. На рисунке приложения АК = высота ромба. АК=АD•sinα=a•sinα ⇒ HO=r=a•sinα•1/2. Из прямоугольного ∆ МОН высота пирамиды МО=ОН•tgβ=(a•sinα•1/2)tgβ
S(ABCD)=AD•CD•sinα=a²•sinα
V=a²•sinα•(a•sinα•1/2)tgβ/3=a³•sin²α•tgβ/6
биссектрисы внутренних односторонних углов взаимно перпендикулярны, поэтому этот четырехугольник - заведомо прямоугольник. Чтобы он был квадратом, достаточно доказать равенство смежных сторон.
Квадрат отличается от прямоугольника тем, что симметричен относительно диагоналей.
У полученного прямоугольника противоположные вершины лежат на прямых, проходящих через середины противоположных сторон исходного прямоугольника.
Поскольку исходный прямоугольник переходит в себя при отражении относительно этих прямых, то и полученный при пересечении биссектрис прямоугольник тоже симметричен относительно этих прямых (то есть переходит в себя при отражении), то есть - относительно своих диагоналей.
значит, это квадрат.
Объяснение:
- источник