Даны точки о(0; 0) и а(-3; 0). на отрезке оа построен параллелограмм , диагонали которого пересекаются в точке в (0; 2). написать уравнение сторон и диагоналей параллелограмма
Обозначим параллелограмм АОСР, где диагонали АС и ОР пересекаются в точке В. Найдем координаты точек С и Р.
Точка С(3;4)
Точка P(0;4) Точки А и О лежат на оси Ох, т е уравнение прямой АО у=0, С и Р лежат на прямой у=4, т е уравнение прямой РС у=4. Точки А и Р лежат на прямой у=kx+b, для A: 0=-3k+b, для P: 4=0*k+b , отсюда b=4, k=4/3, т е уравнение прямой АР у=4/3х+4. Точки О и С лежат на прямой у=kx+b, для О: 0=0*k+b, для С: 4=3*k+b , отсюда b=0, k=4/3, т е уравнение прямой ОС у=4/3х. ответ: уравнения сторон параллелограмма у=0, у=4, у=4/3х+4,
Точка С(3;4)
Точка P(0;4)
Точки А и О лежат на оси Ох, т е уравнение прямой АО у=0, С и Р лежат на прямой у=4, т е уравнение прямой РС у=4.
Точки А и Р лежат на прямой у=kx+b, для A: 0=-3k+b, для P: 4=0*k+b , отсюда b=4, k=4/3, т е уравнение прямой АР у=4/3х+4.
Точки О и С лежат на прямой у=kx+b, для О: 0=0*k+b, для С: 4=3*k+b , отсюда b=0, k=4/3, т е уравнение прямой ОС у=4/3х.
ответ: уравнения сторон параллелограмма у=0, у=4, у=4/3х+4,