В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
VaSa4547
VaSa4547
05.06.2021 11:52 •  Геометрия

Даны уравнения двух прямых: -2х-7у+1=0 и 3х+4у+5=0
Найдите координаты (х0; у0) точки пересечения этих прямых. в ответе запишите сумму х0+у0
а) -2 б) 2 в) -1 г) 1

Показать ответ
Ответ:
Ganifa505
Ganifa505
23.06.2021 12:31
Описанный четырехугольник — это четырехугольник, все стороны которого касаются окружности. При этом окружность называется вписанной в четырехугольник. Какими свойствами обладает вписанная в четырехугольник окружность? Когда в четырехугольник можно вписать окружность? Где находится центр вписанной окружности? Теорема 1. ... В четырехугольник ABCD можно вписать окружность, если. Ab+CD=bc+ad. И обратно, если суммы противоположных сторон четырехугольника равны: Ab+CD=bc+ad ... Центр вписанной в четырехугольник окружности — точка пересечения его биссектрис. O — точка пересечения биссектрис четырехугольника ABCD. AO, BO, CO, DO — биссектрисы углов четырехугольника ABCD, то есть ∠BAO=∠DAO, ∠ABO=∠CBO и т.д.
0,0(0 оценок)
Ответ:
chekmarevna
chekmarevna
11.05.2021 17:11

Рисунок прилагается. Таких внешних касательных существует всего две. Они пересекаются в точке G. BD и CF - радиусы, перпендикулярные касательной GE. Треугольники GDB и GFC подобны по двум углам (G - общий угол, а также ∠GBD=∠GFC=90° (как раз эти самые радиусы)

Тогда из подобия \frac{GB}{GC} =\frac{2}{8} =\frac{1}{4} ; GC = GB + BC; BC = AB + AC =2 + 8 = 10;\\ GC = GB + 10; \frac{GB}{GB+10}=\frac{1}{4};4GB=GB+10;GB=\frac{10}{3};

Наше искомое расстояние AP. Это заодно значит, что AP перпендикулярно GT (второй касательной, можно было так же начертить и с первой, это не принципиально). Тогда треугольники GBH и GAP тоже подобны по двум углам (G - общий и ∠GHB=∠GPA=90°)

и значит, что \frac{GB}{GA} =\frac{BH}{AP} ; GA = GB + AB=\frac{10}{3}+2=\frac{16}{3};\\ \frac{\frac{10}{3} }{\frac{16}{3} }=\frac{2}{AP};\frac{10}{16}=\frac{2}{AP};\frac{5}{8}=\frac{2}{AP};5AP=16; AP=\frac{16}{5}=3,2

ответ: 3,2 см.


Два круга касаются снаружи в точке а. найти длину их общей внешней касательной и расстояние от точки
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота