Даны векторы а(-3;0;4) и b(1;-2;2). а. Найдите длины векторов а и b [2] б. Найдите скалярное произведение векторов а и b [2] в. Найдите косинус угла между ними [2]
Хорда параллельна одному их диаметров. Второй диаметр проходит через середину хорды и центр окружности, являющийся серединой диаметра.
Это означает, что у двух диаметров есть одна общая точка-центр окружности. Аксиома гласит, что через данную точку плоскости (центр окружности в нашем случае) можно провести перпендикуляр к данной прямой только один. Вывод: Существует только ещё 1 диаметр перпендикулярный первому диаметру.
Другая аксиома гласит: "Два перпендикуляра к одной и той же прямой параллельны между собой. "У нас параллельны хорда и один из диаметров, то они и является теми двумя перпендикулярами к одной и той же прямой (проходящей через второй диаметр). И хорда, и первый диаметр являются перпендикулярами ко второму диаметру. Что и следовало доказать.
Хорда параллельна одному их диаметров. Второй диаметр проходит через середину хорды и центр окружности, являющийся серединой диаметра.
Это означает, что у двух диаметров есть одна общая точка-центр окружности. Аксиома гласит, что через данную точку плоскости (центр окружности в нашем случае) можно провести перпендикуляр к данной прямой только один. Вывод: Существует только ещё 1 диаметр перпендикулярный первому диаметру.
Другая аксиома гласит: "Два перпендикуляра к одной и той же прямой параллельны между собой. "У нас параллельны хорда и один из диаметров, то они и является теми двумя перпендикулярами к одной и той же прямой (проходящей через второй диаметр). И хорда, и первый диаметр являются перпендикулярами ко второму диаметру. Что и следовало доказать.
A1. Две прямые на плоскости называются параллельными, если они:
4) не пересекаются
А2. Один из признаков параллельности двух прямых гласит:
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны
А3. Выберите утверждение, являющееся аксиомой параллельных прямых:
Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной
А4. Если две параллельные прямые пересечены секущей, то:
Соответственные углы равны
А5. Если прямая перпендикулярна одной из двух параллельных прямых, то:
Она перпендикулярна и другой
А6. Всякая теорема состоит из нескольких частей:
Условия и заключения
А7. При пересечении двух прямых секущей образуются углы, имеющие специальные названия:
Накрест лежащие, соответственные, односторонние
А8. Аксиома – это:
Положение геометрии, не требующее доказательства
А9. Выберите утверждение, которое является признаком параллельности прямых:
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны
А10. Если прямая не пересекает одну из двух параллельных прямых, то:
Другую прямую она тоже не пересекает
или
С другой прямой она совпадает