Первое, что нетрудно доказывается, --- треугольник АВК прямоугольный. Площадь прямоугольного треугольника = половине произведения катетов))) гипотенуза АВ = 4 --это очевидно из получившейся трапеции... а чтобы найти катеты не хватает известных углов))) на рисунке есть два равных треугольника: треугольник АВК равен половине равнобедренного треугольника с боковыми сторонами 4 ---по гипотенузе и острому углу))) из этого очевидно: АК = 2*КВ по т.Пифагора 4х² + х² = 16 ---> 5x² = 16 S(ABK) = (1/2)*x*2x = x² = 16/5 = 3.2
∠2 & ∠1 — накрест лежащие углы, и так как они друг другу равны, то BC ║AD.
Но это ещё не означает, что наш четырёхугольник — параллелограмм, всего лишь то противоположные друг другу пары прямых — параллельны.
Но у нас есть ещё одно условие: BC == AD. А вот это уже означает, что четырёхугольник — параллелограмм, так как каждые противолежащие друг другу пары сторон во первых: друг другу параллельны.
Во вторых: равны.
6. Так как ΔABC == ΔCDA, то AD == BC, BA == DC, ∠B == ∠D => ∠A == ∠C.
А по 2-ому признаку параллелограмма: все противоположные углы попарно равны, что и означает, что четырёхугольник ABCD — параллелограмм.
Площадь прямоугольного треугольника = половине произведения катетов)))
гипотенуза АВ = 4 --это очевидно из получившейся трапеции...
а чтобы найти катеты не хватает известных углов)))
на рисунке есть два равных треугольника:
треугольник АВК равен половине равнобедренного треугольника с боковыми сторонами 4 ---по гипотенузе и острому углу)))
из этого очевидно: АК = 2*КВ
по т.Пифагора
4х² + х² = 16 ---> 5x² = 16
S(ABK) = (1/2)*x*2x = x² = 16/5 = 3.2
5.
У нас есть данные: ∠2 == ∠1.
∠2 & ∠1 — накрест лежащие углы, и так как они друг другу равны, то BC ║AD.
Но это ещё не означает, что наш четырёхугольник — параллелограмм, всего лишь то противоположные друг другу пары прямых — параллельны.
Но у нас есть ещё одно условие: BC == AD. А вот это уже означает, что четырёхугольник — параллелограмм, так как каждые противолежащие друг другу пары сторон во первых: друг другу параллельны.
Во вторых: равны.
6. Так как ΔABC == ΔCDA, то AD == BC, BA == DC, ∠B == ∠D => ∠A == ∠C.
А по 2-ому признаку параллелограмма: все противоположные углы попарно равны, что и означает, что четырёхугольник ABCD — параллелограмм.