Даны векторы , и . Необходимо: а) вычислить смешанное произведение трёх векторов;
б) найти модуль векторного произведения;
в) вычислить скалярное произведение двух векторов;
г) проверить, будут ли коллинеарны ортогональны два вектора;
д) проверить, будут ли компланарны три вектора.
а=-4i+2j-k, b= 3i+5j-2k, c=j+5k;
а) а,6b,3с; б) 2b,а; в) а,-4с; г) а,b; д) а,6b,3с.
Теорема. Центр окружности, вписанной в треугольник, является точкой пересечения его биссектрис.
Доказательство. Пусть ABC – данный треугольник, O – центр вписанной в него окружности, D, E и F – точки касания окружности со сторонами. Прямоугольные треугольники AOD и AOE равны по гипотенузе и катету. У них гипотенуза AO общая, а катеты OD и OE равны как радиусы. Из равенства треугольников следует равенство углов OAD и OAE. А это значит, что точка O лежит на биссектрисе треугольника, проведённой из вершины A. Точно так же доказывается, что точка O лежит на двух других биссектрисах треугольника. Теорема доказана.
Объяснение:
2) В правильном Δ радиус вписанной окружности равен половине радиуса описанной окружности. Центры этих окружностей в этом случае совпадают, одновременно они являются точками пересечения медиан, которые в точке пересечения делятся в отношении 2:1. Один из этих отрезков является радиусом описанной окружности, второй - радиусом вписанной окружности.
3) Верное. В этом случае высота является по совместительству серединным перпендикуляром, а центр описанной окружности лежит в точке пересечения серединных перпендикуляров.
4) Это утверждение верно только для равностороннего Δ, потому что только у такого Δ совпадают центры вписанной и описанной окружностей, а из написанного условия следует, что O - центр описанной окружности.