Даны векторы m ⃗{6;3},n ⃗{-0,5;1} и (p ) ⃗{2;-4}. Какие из них взаимно перпендикулярны?
Нужно найти скалярное произведение векторов 2 и записать условие перпендикулярности векторов 1
проверить условие перпендикулярности для векторов а ⃗,b ⃗,c ⃗. записать ответ.
2. Разделим угол СОВ пополам. Для этого циркулем из вершины О на сторонах угла отложим равные отрезки ОВ и ОЕ . Затем проводим окружности с центрами в точках В и Е равных радиусов, которые пересекутся в точке F. Прямая, соединяющая O и F делит угол COB пополам. Угол FOB = 45°.
3. Точно так же делим угол СOF пополам. Получаем угол QOF=45°:2=22°30'.
QOB=<QOF+<FOB=22°30'+45°=67°30', что и надо было построить.
512√3 см²
Объяснение:
Выполним рисунок. Дан ромб АБСД, диагональ АС=32√3, диагональ ВД, т.О - точка пересечения диагоналей.
Площадь ромба равна половине произведения его диагоналей. Значит, найдём его диагонали.
1 вариант решения
Рассмотрим ΔАВД.
Он - равносторонний.
Докажем это утверждение. АВ=АД как стороны ромба, значит ΔАВД-равнобедренный с основанием ВД и равными ∠АВД=∠АДВ.
∠АВД=60°, т.к. диагональ ромба ВД, является также и бисектрисой ∠АВС=120°. Сумма внутренних углов треугольника равна 180°, значит ΔДАВ=180-60-60=60°. Все три угла равны, значит доказано, что ΔАВД - равносторонний.
Тогда ВД=АВ=АД.
Т.к. у ромба все стороны равны и их 4, то длина стороны ромба равна периметру ромба, делённому на 4: 128/4=32 см.
Тогда площадь ромба АВСД: АС*ВД/2 = 32√3 * 32 / 2 = 512√3 см².
2 вариант решения.
Рассмотрим ΔАВО.
Он - прямоугольный с
гипотенузой АВ, равной стороне ромба,
∠ВОА=90° т.к. диагонали ромба пересекаются под прямым углом
и катетами АО и ВО, равными соответственно половинам диагоналей АС и ВД, т.к диагонали ромба точкой пересечения делятся пополам,
∠АВО=60°, т.к. диагональ ромба ВД, является также и бисектрисой ∠АВС=120°.
Найдём ВО. Эту величину можно найти 2-мя путями.
ВО=АВ*cos∠ABO = Р/4 * cos 60° = 32 * 0.5 = 16 см или
ВО=АО*ctg∠ABO = 16√3 * 1/√3 = 16 см.
Тогда площадь ромба АВСД: АС*ВД/2 = 32√3 * 16 * 2 / 2 = 512√3 см².
Наличие такого количества решений возникло по причине избыточности условия. Эту задачу можно было бы решить не зная величины периметра ромба, либо без длины диагонали. Ключевое условие здесь, это значение угла , равное 120°.