Дайте відповідь на запитання. а)Чи правильно, що існує прямокутник, який не є паралелограмом?
б)Три кути паралелограма рівні.Визначте вид паралелограма.
в) Як за до транспортира за найменшої кількості вимірювань перевірити, чи є ромбом даний паралелограм?
г) Як за до лише циркуля перевірити, чи є чотирикутник прямокутником?
Два треугольника, которые можно совместить наложением, называются равными.
Из определения непосредственно следует: в равных треугольниках против равных сторон лежат равные углы и обратно — против равных углов лежат равные стороны.
Теорема 1 (первый признак равенства треугольников — по двум сторонам и углу между ними)
Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
Дано: треугольник ABC и треугольник A_1B_1C_1, AB=A_1B_1, AC=A_1C_1, \angle{A}=\angle{A_1}.
Требуется доказать: треугольник ABC равен треугольнику A_1B_1C_1.
Доказательство:
Доказывается наложением одного из треугольников на другой. Треугольники полностью совместятся, следовательно, по определению они равны.
\boxtimes
Теорема 2 (второй признак равенства треугольников — по стороне и двум прилежащим углам)
Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.
Сделайте чертеж, запишите, что дано и что требуется доказать, и докажите наложением треугольников.
Теорема 3 (третий признак равенства треугольников — по трем сторонам)
Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.
Запишите сокращенно условие и заключение теоремы.
Доказательство:
Для доказательства приложим треугольники большими сторонами. Треугольник A_1B_1C_1 займет положение AB_2C. Треугольник BAB_2 и треугольник BCB_2 — равнобедренные. Из равенства углов при основании получаем, что B=B_2. Используем первый признак рав
Объяснение:
Если есть точка М(х₁ у₁) и прямая Ах + Ву + С = 0, то уравнение перпендикулярной прямой: А(у - у₁) - В(х - х₁) = 0.
Подставляем известные данные: точка А(5;-4) и прямая - диагональ ВД: х - 7у - 8 = 0.
Уравнение диагонали АС: 1*(у - (-4)) - (-7)*(х - 5) = 0.
у + 4 + 7х - 35 = 0,
АС: 7х + у - 31 = 0.
Эта же прямая в виду уравнения с коэффициентом:
у = -7х + 31.
В уравнении типа у = кх + в коэффициент к - это тангенс угла наклона прямой к оси "х".
Стороны квадрата проходят под углом +45° и -45° к диагонали.
Используем формулу тангенса суммы (разности) углов:
.
Используя к = -7 для АС, находим "к" для сторон АВ и АД:
Теперь переходим к уравнениям сторон.
У параллельных прямых коэффициент к одинаков.
Найдём координаты точки С, симметричной точка А относительно прямой ВД.
Алгоритм решения :
1) Находим прямую (диагональ АС), которая перпендикулярна прямой ВД.
2) Находим точку К пересечения прямых - это будет центр квадрата.
3) Точка К является серединой отрезка АС. Нам известны координаты середины и одного из концов. По формулам координат середины отрезка находим точку С.
1) Уравнение АС найдено.
2) ВД: х - 7у - 8 = 0 -7х + 49у + 56 = 0
АС: 7х + у - 31 = 0 7х + у - 31 = 0
--------------------------
50у + 25 = 0
у = -25 / 50 = -1/2.
х = 7у + 8 = 7*(-1/2) + 8 = -3,5 + 8 = 4,5.
Получили координаты точки К(4,5; -0,5).
3) Хс = 2Хк - Ха = 2*4,5 - 5 = 9 - 5 = 4.
Ус = 2Ук - Уа = 2*(-0,5) - (-4) = -1 + 4 = 3.
Уравнения сторон:
АВ: -4 = (-3/4)*5 + в в = -4 + (15/4) = (-16/4) + (15/4) = -1/4.
АВ: у = (-3/4)х - (1/4).
СД: 3 = (-3/4)*4 + в в = 3 + (12/4) = 3 + 3 = 6.
СД: у = (-3/4)х + 6.
АД: -4 = (4/3)*5 + в в = -4 - (20/3) = (-12/3) - (20/3) = -32/3
АД: у = (4/3)х - (32/3).
ВС: 3 = (4/3)*4 + в в= 3 - (6/3) = (9 - 16)/3 = -7/3.
ВС: у = (4/3)х - (7/3).